ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
  • Springer  (3)
  • Agu  (1)
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Wiley
  • 2010-2014  (3)
  • 2005-2009  (2)
Collection
Years
  • 2010-2014  (3)
  • 2005-2009  (2)
Year
  • 1
    Publication Date: 2017-04-04
    Description: On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.
    Description: Published
    Description: 719-731
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Landslide ; turbidite ; tsunami ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.
    Description: Published
    Description: 1488-1504
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flow transitions ; island volcano ; subaqueous cohesionless density flows ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.
    Description: Unpublished
    Description: -
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Landslide ; turbidite ; tsunami ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Agu
    In:  Froger, J.-L., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187, 245–258. Gvirtzman, Z., and A. Nur (1999), The formation of Mount Etna as the consequence of slab rollback, Nature, 401, 782–785. Leslie, S. C., G. F. Moore, J. K. Morgan, and D. J. Hills (2002), Seismic stratigraphy of the frontal Hawaiian moat: Implications for sedimentary processes at the leading edge of an oceanic hotspot trace, Mar. Geol., 184, 143–162. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari (2004), Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, L04602, doi:10.1029/2003GL018736. Maramai, A., L. Graziani, G. Alessio, P. Burrato, L. Colini, L. Cucci, R. Nappi, A. Nardi, and G.Vilardo (2005), Near- and far-field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami, Mar. Geol., 215, 93– 106. Moore, J. G., D. A. Clague, R. T. Holcomb, P. W. Lipman, W. R. Normak, and M. E. Torresan (1989), Prodigious submarine landslides on the Hawaiian ridge, J. Geophys. Res., 94, 17,465–17,484. Morgan, J. K., F. M. Moore, J. Hills, and S. Leslie (2000), Overthrusting and sediment accretion along Kilauea’s mobile south flank, Hawaii: Evidence for volcanic spreading from marine seismic reflection data, Geology, 28, 667–670. Monaco, C., P. Tapponier, L. Tortorici, and P. Y. Gillot (1997), Late quaternary slip-rates on the Acireale-Piedimonte normal fault and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147, 125– 139. Nicolich, R., M. Laigle, A. Hirn, L. Cernobori, and J. Gallart (2000), Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution, Tectonophysics, 329, 121– 139. Romano, R., and C. Sturiale (1982), The historical eruptions of Mt. Etna (volcanological data), in Mt. Etna Volcano, edited by R. Romano, Mem. Soc. Geol. It., 23, 75–97. von Huene, R., C. R. Ranero, and P. Watts (2004), Tsunamigenic slope failure along Middle America Trench in two tectonic settings, Mar. Geol., 203, 303– 317. Yilmaz, O. (1987), Seismic data processing, Invest. Geophys., vol. 2, Soc. of Explor. Geophys., 562 pp., Tulsa, Okla.
    Publication Date: 2017-04-04
    Description: High resolution seismic data, we collected in the Ionian sea, reveal large submarine landslide deposits offshore from Mt. Etna (Italy), spatially consistent with the eastern flank collapse of this volcano. A large debris-avalanche deposit, we relate to the Valle del Bove scar, displays long offshore run-outs (till 20 km) and a volume of a few tens of cubic kilometres (16–21 km3). Other landslide deposits are also imaged, in particular a striking unique record of the relative timing of multiple submarine large slump events.
    Description: Published
    Description: L13302
    Description: JCR Journal
    Description: reserved
    Keywords: submarine landslides ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: More than ca 100 km3 of nearly homogeneous crystal-poor phonolite and ca 100 km3 of slightly zoned trachyte were erupted 39 ka during the Campanian Ignimbrite super eruption, the most powerful in the Neapolitan area. Partition coefficient calculations, equilibrium mineral assemblages, glass compositions and texture were used to reconstruct compositional, thermal and pressure gradients in the pre-eruptive reservoir as well as timing and mechanisms of evolution towards magma chamber overpressure and eruption. Our petrologic data indicate that a wide sill-like trachytic magma chamber was active under the Campanian Plain at 2.5 kbar before CI eruption. Thermal exchange between high liquidus (1199 C) trachytic sill and cool country rocks caused intense undercooling, driving a catastrophic and fast (102 years) in situ fractional crystallization and crustal assimilation that produced a water oversaturated phonolitic cap and an overpressure in the chamber that triggered the super eruption. This process culminated in an abrupt reservoir opening and in a fast single-step high decompression. Sanidine phenocrysts crystal size distributions reveal high differentiation rate, thus suggesting that such a sill-like magmatic system is capable of evolving in a very short time and erupting suddenly with only short-term warning.
    Description: Published
    Description: On line First
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Campanian Ignimbrite ; Super eruption ; Crystal size distribution ; Partition coefficients ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...