ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.01. General::03.01.03. Global climate models
  • American Meteorological Society  (5)
  • Springer Nature
  • 2010-2014  (2)
  • 2005-2009  (3)
  • 1970-1974
  • 1935-1939
Collection
Years
  • 2010-2014  (2)
  • 2005-2009  (3)
  • 1970-1974
  • 1935-1939
  • 2015-2019  (1)
Year
  • 1
    Publication Date: 2021-06-01
    Description: Five non-eddy-resolving oceanic general circulation models driven by atmospheric fluxes derived from the NCEP reanalysis are used to investigate the link between the Gulf Stream (GS) variability, the atmospheric circulation, and the Atlantic meridional overturning circulation (AMOC). Despite the limited model resolution, the temperature at the 200-m depth along the mean GS axis behaves similarly in most models to that observed, and it is also well correlated with the North Atlantic Oscillation (NAO), indicating that a northward (southward) GS shift lags a positive (negative) NAO phase by 0–2 yr. The northward shift is accompanied by an increase in the GS transport, and conversely the southward shift with a decrease in the GS transport. Two dominant time scales appear in the response of the GS transport to the NAO forcing: a fast time scale (less than 1 month) for the barotropic component, and a slower one (about 2 yr) for the baroclinic component. In addition, the two components are weakly coupled. The GS response seems broadly consistent with a linear adjustment to the changes in the wind stress curl, and evidence for baroclinic Rossby wave propagation is found in the southern part of the subtropical gyre. However, the GS shifts are also affected by basin-scale changes in the oceanic conditions, and they are well correlated in most models with the changes in the AMOC. A larger AMOC is found when the GS is stronger and displaced northward, and a higher correlation is found when the observed changes of the GS position are used in the comparison. The relation between the GS and the AMOC could be explained by the inherent coupling between the thermohaline and the wind-driven circulation, or by the NAO variability driving them on similar time scales in the models.
    Description: This research was supported by the PREDICATE project of the European Community, and for M. Bentsen by the Research Council of Norway through RegClim, NOClim, and the Programme of Supercomputing.
    Description: Published
    Description: 2119–2135
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: ocean modelling ; gulf stream variability ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: The development of the INGV (Istituto Nazionale di Geofisica e Vulcanologia)-CMCC (Centro Euro-Mediterraneo per i Cambiamenti Climatici) Seasonal Prediction System (SPS) is documented. In this SPS the ocean initial conditions estimation includes a Reduced Order Optimal Interpolation procedure for the assimilation of temperature and salinity profiles at the global scale. Nine member ensemble forecasts have been produced for the period 1991-2003 for two starting dates per year in order to assess the impact of the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations (i.e.: without assimilation of subsurface profiles during ocean initialization), we showed that the improved ocean initialization increases the skill in the prediction of tropical Pacific SSTs in our system for boreal winter forecasts. Considering the forecast of the El Ni˜no 1997-1998, the data assimilation in the ocean initial conditions leads to a considerable improvement in the representation of its onset and development. Our results indicate a better prediction of global scale surface climate anomalies for the forecasts started in November, probably due to the improvement in the tropical Pacific. For boreal winter, in both tropics and extra tropics, we show significant increases in the capability of the system to discriminate above normal and below normal temperature anomalies.
    Description: Published
    Description: 2930-2952
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: ocean modelling ; global climate models ; seasonal forecast ; coupled models ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The effect of horizontal resolution on tropical variability is investigated within the modified SINTEX model, SINTEX-F, developed jointly at INGV, IPSL and at the Frontier Research System. The horizontal resolutions T30 and T106 are investigated in terms of the coupling characteristics, frequency and variability of the tropical ocean-atmosphere interactions. It appears that the T106 resolution is generally beneficial even if it does not eliminate all the major systematic errors of the coupled model. There is an excessive shift west of the cold tongue and ENSO variability, and high resolution has also a somewhat negative impact to the variability in the East Indian Ocean. A dominant two-year peak for the NINO3 variabilty in the T30 model is moderated in the T106 as it shifts to longer time scale. At high resolution new processes come into play, as the coupling of tropical instability waves, the resolution of coastal flows at the Pacific Mexican coasts and improved coastal forcing along the coast of South America. The delayed oscillator seems the main mechanism that generates the interannual variability in both models, but the models realize it in different ways. In the T30 model it is confined close to the equator, involving relatively fast equatorial and near-equatorial modes, in the high resolution, it involves a wider latitudinal region and slower waves. It is speculated that the extent of the region that is involved in the interannual variability may be linked to the time scale of the variability itself.
    Description: This research was partially supported by the Italy–USA Cooperation Program of the Italian Ministry of Environment and by the EU projects ENSEMBLES and DYNAMITE.
    Description: Published
    Description: 730-750
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: coupled models ; tropical variability ; ENSO system ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Ensemble experiments are performed with five coupled atmosphere–ocean models to investigate the potential for initial-value climate forecasts on interannual to decadal time scales. Experiments are started from similar model-generated initial states, and common diagnostics of predictability are used. We find that variations in the ocean meridional overturning circulation (MOC) are potentially predictable on interannual to decadal time scales, a more consistent picture of the surface temperature impact of decadal variations in the MOC is now apparent, and variations of surface air temperatures in the North Atlantic Ocean are also potentially predictable on interannual to decadal time scales, albeit with potential skill levels that are less than those seen for MOC variations. This intercomparison represents a step forward in assessing the robustness of model estimates of potential skill and is a prerequisite for the development of any operational forecasting system.
    Description: Published
    Description: 1195-1203
    Description: JCR Journal
    Description: reserved
    Keywords: Decadal Climate ; North Atlantic ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-03
    Description: A global ocean three-dimensional variational data assimilation system was developed with the aim of assimilating along-track sea level anomaly observations, along with in situ observations from bathythermographs and conventional sea stations. All the available altimetric data within the period October 1992–January 2006 were used in this study. The sea level corrections were covariated with vertical profiles of temperature and salinity according to the bivariate definition of the background-error vertical covariances. Sea level anomaly observational error variance was carefully defined as a sum of instrumental, representativeness, observation operator, and mean dynamic topography error variances. The mean dynamic topography was computed from the model long-term mean sea surface height and adjusted through an optimal interpolation scheme to account for observation minus first-guess biases. Results show that the assimilation of sea level anomaly observations improves the model sea surface height skill scores as well as the subsurface temperature and salinity fields. Furthermore, the estimate of the tropical and subtropical surface circulation is clearly improved after assimilating altimetric data. Nonnegligible impacts of the mean dynamic topography used have also been found: compared to a gravimeter-based mean dynamic topography the use of the mean dynamic topography discussed in this paper improves both the consistency with sea level anomaly observations and the verification skill scores of temperature and salinity in the tropical regions. Furthermore, the use of a mean dynamic topography computed from the model long-term sea surface height mean without observation adjustments results in worsened verification skill scores and highlights the benefits of the current approach for deriving the mean dynamic topography.
    Description: European Commission WP4 Fondazione Cassa di Risparmio di Bologna Cnes
    Description: Published
    Description: 738-754
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: Data assimilation ; Satellite observations ; Ocean models ; Sea level ; In situ observations ; Variational analysis ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...