ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases  (5)
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
  • Springer-Verlag  (4)
  • Blackwell Publishing Ltd  (2)
  • American Society of Hematology
  • Nature Publishing Group
  • 2010-2014  (4)
  • 2005-2009  (3)
  • 1975-1979
Collection
Years
  • 2010-2014  (4)
  • 2005-2009  (3)
  • 1975-1979
Year
  • 1
    Publication Date: 2017-04-04
    Description: Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux has been measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.
    Description: Published
    Description: 103-118
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon dioxide ; Soil diffuse degassing ; Monitoring ; Vesuvio . Campi Flegrei ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The paper describes a case of a natural emission of methane from soil in an urban development area, generating a significant risk for the local population and buildings, due to gas explosiveness and asphyxiation potential. The site is located on the south-western margin of the East-European Platform in eastern Romania, in a hydrocarbon-prone area crossed by the Pericarpathian lineament and regional faults. Molecular composition of gas and stable isotopic analyses of methane (CH4〉90%, δ to the power of 13 C1: -49.4‰, δD1: -173.4‰) indicate a dominant thermogenic origin, with significant amounts of C2-C5 alkanes (~5%), likely migrating through faults from a deep reservoir. Possible candidates are the Saucesti and Secuieni gas fields, located in the same petroleum system. Two surface geochemical surveys, based on closed-chamber flux measurements, were performed to assess the degassing intensity and the extent of the affected area. Methane fluxes from soil reach orders of 10 to the power of 4 mg m to the power of -2 day to the power of -1. Gas seepage mainly occurs in one zone 30 000 m2 wide, and it is likely controlled by channeling along a fault and gas accumulation in permeable sediments and shallow subsoil. The estimated total CH4 emission is about 40 t year to the power of -1 CH4, of which 8–9 t year to the power of -1 are naturally released from soil and 30–35 t year to the power of -1 are emitted from shallow boreholes. These wells have likely channeled the gas accumulated in shallow alluvial sediment but gas flux from soil is still high and mitigation measures are needed to reduce the risk for humans and buildings.
    Description: Published
    Description: 311-320
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: gas hazard ; methane seepage ; soil degassing ; thermogenic gas ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A new seafloor observatory, the gas monitoring module (GMM), has been developed for continuous and long-term measurements of methane and hydrogen sulphide concentrations in seawater, integrated with temperature (T), pressure (P) and conductivity data at the seafloor. GMM was deployed in April 2004 within an active gas-bearing pockmark in the Gulf of Patras (Greece), at a water depth of 42 m. Through a submarine cable linked to an onshore station, it was possible to remotely check, via direct phone connection, GMM functioning and to receive data in nearreal time. Recordings were carried out in two consecutive campaigns over the periods April–July 2004, and September 2004–January 2005, amounting to a combined dataset of ca. 6.5 months. This represents the first long-term monitoring ever done on gas leakage from pockmarks by means of CH4+H2S+T+P sensors. The results show frequent T and P drops associated with gas peaks, more than 60 events in 6.5 months, likely due to intermittent, pulsation-like seepage. Decreases in temperature in the order of 0.1–1°C (up to 1.7°C) below an ambient T of ca. 17°C (annual average) were associated with short-lived pulses (10–60 min) of increased CH4+H2S concentrations. This seepage “pulsation” can either be an active process driven by pressure build-up in the pockmark sediments, or a passive fluid release due to hydrostatic pressure drops induced by bottom currents cascading into the pockmark depression. Redundancy and comparison of data from different sensors were fundamental to interpret subtle proxy signals of temperature and pressure which would not be understood using only one sensor.
    Description: Published
    Description: 297-302
    Description: JCR Journal
    Description: reserved
    Keywords: methane-seeping ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Chimaera gas seep, near Antalya (SW Turkey), has been continuously active for thousands of years and it is known to be the source of the first Olympic fire in the Hellenistic period. New and thorough molecular and isotopic analyses including methane (approximately 87% v/v; δ to the power of 13 C1 from -7.9‰ to -12.3‰; δ to the power of 13 D1 from -119‰ to -124‰), light alkanes (C2 + C3 + C4 + C5 = 0.5%; C6+: 0.07%; δ to the power of 13 C2 from -24.2‰ to -26.5‰; δ to the power of 13 C3 from -25.5‰ to -27‰), hydrogen (7.5–11%), carbon dioxide (0.01–0.07%; δ to the power of 13 CCO2: -15‰), helium (approximately 80 ppmv; R/Ra: 0.41) and nitrogen (2–4.9%; δ to the power of 15 N from -2‰ to -2.8‰) converge to indicate that the seep releases a mixture of organic thermogenic gas, related to mature type III kerogen occurring in Palaeozoic and Mesozoic organic-rich sedimentary rocks, and abiogenic gas produced by low-temperature serpentinization in the Tekirova ophiolitic unit. Methane is not related to mantle or magma degassing. The abiogenic fraction accounts for about half of the total gas released, which is estimated to be well beyond 50 ton year to the power of -1. Ophiolites and limestones are in contact along a tectonic dislocation leading to gas mixing and migration to the Earth’s surface. Chimaera represents the biggest emission of abiogenic methane on land discovered so far. Deep and pressurized gas accumulations are necessary to sustain the Chimaera gas flow for thousands of years and are likely to have been charged by an active inorganic source.
    Description: Published
    Description: 263-273
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: abiogenic methane ; isotopic composition ; ophiolites ; seep ; serpentinization ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Gas and water samples were collected at CO2-rich wells in the plain of Florina (N. Greece). Chemical and isotopic composition of the analysed gases reveals their main crustal origin even if a small but significant contribution of mantle derived gases can be recognized. As a consequence of CO2 dissolution, HCO3- is always the main dissolved anion while cationic composition allows us to distinguish at least two main groups characterized by Na or Ca as dominant dissolved cations. The water-rock interaction is strongly enhanced by the dissolution of CO2 and the consequent lowering of pH. Such a process increases the mobility of some trace elements whose concentrations very often exceed UE drinking water limits. This study confirms that the Florina basin represents a good natural analogue of carbon storage systems and underscores the fact that possible deterioration of water quality due to CO2 leaks of the reservoirs must be carefully taken in account.
    Description: Published
    Description: 135-143
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: reserved
    Keywords: Groundwater ; Water quality ; carbon dioxide ; trace elements ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a calderaforming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island’s coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area.
    Description: Published
    Description: 79-106
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Ischia . ; Caldera resurgence ; Slope instability ; Debris avalanche ; Lahar ; Volcanic and related hazards ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...