ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (49)
  • American Society of Hematology
  • Annual Reviews
  • Copernicus
  • Institute of Physics
  • National Academy of Sciences
  • 2010-2014  (32)
  • 2005-2009  (16)
  • 1990-1994  (1)
  • 1980-1984
  • 1960-1964
Collection
Source
Years
Year
  • 1
    facet.materialart.
    Unknown
    Institute of Physics
    In:  Journal of Physics - Condensed Matter, 18 (38). S2919-S2934.
    Publication Date: 2020-07-20
    Description: Loss processes in magnetic nanoparticles are discussed with respect to optimization of the specific loss power (SLP) for application in tumour hyperthermia. Several types of magnetic iron oxide nanoparticles representative for different preparation methods (wet chemical precipitation, grinding, bacterial synthesis, magnetic size fractionation) are the subject of a comparative study of structural and magnetic properties. Since the specific loss power useful for hyperthermia is restricted by serious limitations of the alternating field amplitude and frequency, the effects of the latter are investigated experimentally in detail. The dependence of the SLP on the mean particle size is studied over a broad size range from superparamagnetic up to multidomain particles, and guidelines for achieving large SLP under the constraints valid for the field parameters are derived. Particles with the mean size of 18 nm having a narrow size distribution proved particularly useful. In particular, very high heating power may be delivered by bacterial magnetosomes, the best sample of which showed nearly 1 kW g−1 at 410 kHz and 10 kA m−1. This value may even be exceeded by metallic magnetic particles, as indicated by measurements on cobalt particles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2019-09-23
    Description: EGU2010-13373 The frequency of volcanic activity varies on a wide rangeof spatial and temporal scales, from 〈1 yr. periodicities in single volcanic systems to periodicities of 106 yrs. in global volcanism. The causes of these periodicities are poorly understood although the long-term global variations are likely linked to plate-tectonic processes. Here we present evidence for temporal changes in eruption frequencies at an intermediate time scale (104 yrs.) using the Pleistocene to recent records of widespread tephras of sub-Plinian to Plinian, and occasionally co-ignimbrite origin, along the Pacific Ring of Fire, which accounts for about half of the global length of 44,000 km of active subduction. Eruptions at arc volcanoes tend to be highly explosive and the well-preserved tephra records from the ocean floor can be assumed to be representative of how eruption frequencies varied with time. Volcanic activity along the Pacific Ring of Fire evolved through alternating phases of high and low frequency; although there is modulation by local and regional geologic conditions, these variations have a statistically significant periodicity of 43 ka that overlaps with the temporal variation in the obliquity of the Earth’s rotation axis, an orbital parameter that also exerts a strong control on global climate changes. This may suggest that the frequency of volcanic activity is controlled by effects of global climate changes. However, the strongest physical effects of climate change occur at 100 ka periods which are not seen in the volcanic record. We therefore propose that the frequency of volcanic activity is directly influenced by minute changes in the tidal forces induced by the varying obliquity resulting in long-period gravitational disturbances acting on the upper mantle.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-10518 Seafloor compliance is the transfer function between pressure and vertical displacement at the seafloor Infragravity waves in the oceanic layer have long periods in the range of 30 – 500 s and obey a simple frequencywavenumber relation. Seafloor compliance from infragravity waves can be analyzed with single station recordings to determinate sub-seafloor shear wave velocities. Previous studies in the Pacific Ocean have demonstrated that reliable near-surface shear wave profiles can be derived from infragravity wave compliance. However, these studies indicate that, beside the water depth the compliance measurements are limited by instrument sensitivity, calibration uncertainties and possibly other effects. In this work seafloor compliance and infragravity waves are observed at two different locations in the Atlantic Ocean: the Logatchev hydrothermal field at the Mid Atlantic Ridge and the Azores (Sao Miguel Island). The data was acquired with the broadband ocean compliance station developed at the University of Hamburg as well as ocean station from the German instrument pool for amphibian seismology (DEPAS) equipped with broadband seismometers and pressure sensors. Vertical velocity and pressure data were used to calculate power spectral densities and normalized compliance along two profiles (one in each location). Power spectral densities show a dominant peak at low frequencies (0.01-0.035Hz) limited by the expected cut-off frequency, which is dependent on the water depth at each station. The peak has been interpreted as a strong infragravity wave with values between 10-14 and 10-11 (m/s2)2/Hz and 104 and 106 (Pa2)2/Hz for acceleration and pressure respectively. The results show compliance values between 10-10 and 10-8 1/Pa and its estimations take into account the coherence between seismic and pressure signals in order to confirm that the seismic signals in the infragravity waves are caused by pressure sources. Shear wave velocity models, with depth resolution from 200 to 2500 m for the deep water stations, were derived from compliance. Preliminary results indicate shear wave velocity increasing from 200 to 3500 m/s.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-9841 Active mud volcanoes, where changing salinities of pore fluids, large temperature gradients and occurrences of free gas are frequently observed, should potentially exhibit significant variability in their internal resistivity structure. This is due to the fact that the bulk resistivity is mainly determined by the porosity of sediments and the electrical resistivity of the pore filling contained therein. The resistivity variations may be derived from controlled source electromagnetic (CSEM) measurements. CSEM systems consist of an electric dipole transmitter producing a time varying source field and electric dipole receivers, which measure the earth´s response to this signal. For a RWE Dea funded investigation of fluid and gas leakages at the North Alex Mud Volcano (NAMV) - a comparatively small target with an area of about 1km2 - we have developed a new high resolution CSEM system. The system consists of several autonomous electric dipole receivers and a lightweight electric dipole transmitter, which can be mounted on a small remotely operated underwater vehicle (ROV). The use of a ROV allows for a precise placement of the transmitter, which is a necessary prerequisite for the investigation of such a small target. Furthermore, electromagnetic signals may be transmitted from different directions with respect to the stationary receivers, allowing for a 3D-style tomographic experiment. In this experiment, ten receivers were deployed over the surface of NAMV at a total of 16 receiver locations. During three successful dives with a Cherokee ROV (Ghent University, Belgium), the transmitter was deployed at a total of 80 locations. Here we present first quantitative results consisting of apparent resistivity estimations from the CSEM time domain data for each transmitter-receiver pair. The apparent resistivity map shows that the NAMV indeed has a heterogeneous resistivity structure with apparent resistivities varying by at least a factor of two: low apparent resistivities (~ 0.8Ωm) are found towards the center of the MV, whereas higher apparent resistivities (~ 1.6Ωm) prevail away from the center. In a second step, we interpret the time-domain data based on 1D inversions. Good data fits can be achieved by models containing 2-3 layers. Generally, the models indicate low resistivities at the surface, which can be associated with penetrating salt water and/or high temperatures. Toward greater depths, increasing resistivities presumably are due to a combination of compaction of sediments (i.e. reduced pore space), an increased presence of fresh water and possible occurrences of free gas. For some 1D models, the increase in resistivity exceeds a factor of 10 or more and layer interfaces are indicated down to depths of up to 70m. The derived resistivity variations observed at the NAMV will be interpreted in conjunction with temperature (Feseker, this session), fluid flow (Brückmann et al., this session) and seismic data (Bialas et al., this session) acquired. Temperature variations measured in the upper few meters are related to fluid flow, where high temperatures are indicative of upwelling fluids of low salinity and low temperature of either a downward flow of saline fluids or no flow activity. This type of surface measurement constitutes an integrative fluid flow gauge, which we can resolve vertically with our resistivity models. Seismic data yield a background structure to our resistivity model. New analysis of seismic data shows that seismic activity may also be linked to fluid flow activity, which we aim to match with resistivity variations and oscillations, which were observed in the electric and magnetic fields (Lefeldt et al., this session).
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts ; EGU2010-5184 .
    Publication Date: 2012-07-06
    Description: Recently Hathorne et al. (2009) documented large intratest trace element (TE) variations in planktonic foraminifera from a single sediment trap sample that could not be explained by variations in water column properties. The laser ablation ICP-MS depth profiles of trace elements through the test walls revealed strong positive correlations between Li, Mg, Mn and Ba resulting from the mixing of a lower TE outer calcite with a higher TE inner calcite. In contrast Sr/Ca ratios remained relatively constant throughout the test wall. These intratest TE variations likely result from biomineralization processes and therefore should be explained by any valid biomineralization model. However, changes in calcite precipitation rate, crystal structure, or the chemical composition of the internal calcification reservoir could not, by themselves, fully account for the pattern of cation intratest variability. Here I expand on this work and investigate if a model of coral biomineralization by Sinclair and Risk (2006) can be adapted to explain the pattern of intratest TE variability in foraminifera. It is clear that the low Mg calcite secreting foraminifera must reduce the Mg/Ca ratio of the calcifying solution by at least a factor of 10 (e.g. Hathorne et al., 2009) and it has been suggested this is achieved by active removal of Mg from the calcification reservoir, although the actual mechanisms remain debatable (e.g. Bentov and Erez, 2006). However, a recent study of the calcification of a low Mg calcite species in the laboratory found a large shortcoming in the amount of Ca potentially provided by seawater transported to the site of calcification in vacuoles compared to a conservative estimate of the amount required to form the new calcite wall (de Nooijer et al., 2009a). This suggests active Ca transport to the site of calcification is required to provide sufficient Ca. If Ca specific, this Ca addition would effectively dilute the TE content (including Mg) of the calcification reservoir to varying degrees and potentially cause the positive TE correlations seen across the test wall. Sinclair and Risk (2006) used this dilution model to successfully explain some TE correlations in coral skeletons. This model can be effectively adapted to foraminifera as it accounts for recent observations of foraminiferal calcification including the transport of seawater by liquid endocytosis to the calcification site and an elevated pH at the site of calcification (Bentov et al., 2009; de Nooijer et al., 2009a, 2009b). This model therefore provides a powerful tool with which to integrate constraints from experimental observation with those from micro-analytical measurements to improve the accuracy, precision and scale of the palaepalaeoceanographic application of foraminiferal geochemistry. Bentov and Erez (2006) Geochem. Geophys. Gepsyst. 7, Q01P08. Bentov et al. (2009) PNAS 106, 21500. de Nooijer et al. (2009a) Biogeosciences 6, 2669. de Nooijer et al. (2009b) PNAS 106, 15374. Hathorne et al. (2009) Paleoceanography 24, PA4204. Sinclair and Risk (2006) Geochim. Cosmochim. Acta 70, 3855.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts ; /EGU2010-12153 .
    Publication Date: 2012-07-06
    Description: We present Mg/Ca analyses performed via a Flow Through sequential dissolution device connected to an ICP-OES on the planktonic foraminifer Globorotalia inflata. The aim of the study is to explore the possibility to reconstruct the thermal gradient in the water column by separating non-crusted and crusted calcite phases in the tests of G. inflata using the difference between their Mg/Ca ratios as a measure of the thermal gradient. An important assumption is that the non-crusted part of the tests is calcified in shallow, warmer water than the crusted part. For analyses a range of different preparation steps were used to determine the ideal way of separating the phases. Foraminifer tests were (not) cleaned, (not) crushed, and (not) pulverized before online analysis with the FT device. To analyze samples with a FT device the foraminifer tests are placed on a filter with a mesh of 0.45 μm preventing clay minerals to wash through. A sequential dissolution protocol first rinses the samples with buffered Seralpur water before QD HNO3 is added in small steps to create a ramp of increasing acid strength. As acid is kept constant at each concentration for several minutes, dissolution of a specific calcite phase can take place. Initial results show that it is most effective to slightly crush the tests without applying standard cleaning procedures, but rather analyze them without cleaning. Samples were selected from the South Atlantic (core tops and specific downcore samples) and the Mediteterranean (plankton tows). All samples were chosen based on previous work on them to provide comparison with routinely analysed Mg/Ca ratios. The South Atlantic samples have been analyzed extensively as bulk samples separated in difference size fractions and crusted vs. non-crusted (Groeneveld and Chiessi). The Mediterranean samples were not only analyzed as bulk samples but also by Laser Ablation ICP-MS (von Raden et al.). Results show that bulk analyses are reliably reproduced by the FT method, especially for samples which are dominated by crusted calcite. Samples which were uncrusted often gave much higher Mg/Ca ratios than the bulk analyses. These higher Mg/Ca ratios mainly occur in the plankton tow samples and were also identified with Laser Ablation ICP-MS. A possible reason for this could be the presence of a high Mg amorphous calcite layer on the outside of foraminifer tests which have not completed their calcification yet as was recently also pointed out in several other studies. Identification of the crusted and uncrusted phases, and therewith a thermal gradient, seems to give the expected differences but a more rigorous statistical treatment is needed to pinpoint singular dissolution phases.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-14
    Description: Earthquake history shows that the Sunda subduction zone of the Indonesian margin produces great earthquakes offshore Sumatra, whereas earthquakes of comparable magnitude are lacking offshore Java and the Lesser Sunda islands. Morphological structures from multibeam bathymetric data across the forearc relate with the extent of the seismogenic zone (SZ). Off Java and the Lesser Sunda islands the Indo-Australian plate subducts almost normal underneath the oceanic plate of the Indonesian archipelago. Landward of the trench, the outer wedge of the slope break is ~50 km uniformly wide with uniform bathymetric gradients. The slope of the outer wedge is locally cut by one/two steeper ridges of ~5 km extent. The sharp slope break corresponds to the updip limit of the SZ, which is also associated with the seawardmost part of the outer arc high. Landward of the slope break we find narrow, uniform outer arc ridges. The landward termination of these ridges coincides with the downdip limit of the SZ. The intersection of the shallow upper plate mantle with the subduction thrust fault marks the downdip limit of the SZ beneath the forearc. Off Sumatra the Indo-Australian plate subducts obliquely underneath the continental part of the Indonesian Sunda margin. Landward of the trench, the outer wedge varies, being mostly ~70 km wide, in some areas narrowing to 50 km width. The lower slope bathymetric gradients are steep. The outer wedge slope is made up of several steeper ridges of ~5 km extent. The slope break is only locally sharp, and corresponds to the updip limit of the SZ. The outer arc ridges off Sumatra are, in comparison with the forearc structures off Java and the Lesser Sunda islands, wider and partly elevated above sea level forming the Mentawai forearc islands. The downdip limit of the SZ coincides with the intersection of a deeper upper plate mantle with the subduction thrust fault beneath the forearc. Sunda Strait marks a transition zone between the Sumatra and Java margins. Seafloor morphology enables the identification of the seismogenic zone (SZ) across the entire Sunda margin. The SZ is uniformly wide for the Sumatra margin and narrows off Sunda Strait. Sunda Strait is the transition between the Sumatra margin and the uniformly narrow extent of the SZ of the Java/Lesser Sunda margin. Comparing the Java and Lesser Sunda islands with the Sumatra margin we find the differences along the Sunda margin, especially the wider extent of the SZ off Sumatra, producing larger earthquakes, to result from the combination of various causes: The sediment income on the oceanic incoming plate and the subduction direction; we attribute a major role to the continental/oceanic upper plate nature of Sumatra/Java influencing the composition and deformation style along the forearc and subduction fault. Off Sumatra the SZ is up to more than twice as wide as off Java/Lesser Sunda islands, enlarging the unstable regime off Sumatra and thus the risk of sudden stress release in a great earthquake.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 407 .
    Publication Date: 2012-07-06
    Description: EGU2011-407 The spatial and temporal distribution of sea ice in the subpolar North Atlantic is mainly controlled by the advection of warm Atlantic Water via the Norwegian and West Spitsbergen Current in eastern Fram Strait. Simultaneously, polar water and sea ice from the Arctic Ocean is transported southward by the East Greenland Current. Hence, variations in the strength of this oceanic circulation regime may either stimulate or reduce the sea ice extent. Based on organic geochemical studies of a high-resolution sediment core from eastern Fram Strait we provide new evidence for the highly variable character of the sea ice conditions in this area. The combination of the sea ice proxy IP25 (Belt et al., 2007) with phytoplankton derived biomarkers (e.g. brassicasterol, dinosterol; Volkman 2006) enables a reliable reconstruction of sea surface and sea ice conditions, respectively (Müller et al., 2009; 2010). By means of these biomarkers, we trace gradually increasing sea ice occurrences from the Mid to the Late Holocene – consistent with the neoglacial cooling trend. Throughout the past ca. 3,000 years (BP) we observe a significant short-term variability in the biomarker records, which points to rapid advances and retreats of the sea ice cover at the continental margin of West Spitsbergen. The co-occurrence of IP25 and phytoplankton markers, however, suggests that the primary productivity benefits from these sea ice surges. As such, higher amounts of open-water phytoplankton biomarkers together with peak abundances of IP25 indicate recurring periods of enhanced ice-edge phytoplankton blooms at the core site. To what extent a seesawing of temperate Atlantic Water may account for these sea ice fluctuations requires further investigation. Concurrent variations in Siberian river discharge (Stein et al., 2004) or Norwegian glacier extents (Nesje et al., 2001), however, strengthen that these fluctuations may be assigned to variations in the North Atlantic/Arctic Oscillation (NAO/AO) and (hence) a weakened/accelerated Atlantic Water input and Arctic sea ice export.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-07-06
    Description: The upwelling area in the eastern equatorial Pacific off Peru is one of the most pronounced oxygen minimum zones (OMZs) of the modern ocean. Modeling scenarios predict an expansion of the OMZs in the course of global change in the coming decades. As a consequence, the Peruvian continental margin represents a key locality for studies on biogeochemical dynamics in the future ocean. We present pore water and sediment data for redox-sensitive metals (Fe, Mn, V, Mo, and U) that have been collected along a transect across the Peruvian margin at 11°S. The results are used to evaluate the behavior of trace metals in a wide range of biogeochemical and hydrodynamic settings. In the core of the OMZ, where permanently anoxic conditions prevail, redox sensitive metals exhibit diagenetic behaviors largely consistent with previous studies. Vanadium and Mo are released from Fe oxihydroxides and subsequently recycled through diffusion across the benthic boundary or trapped through formation of authigenic V phases and sequestration of Mo by authigenic pyrite. Some U is delivered through diffusion across the benthic boundary, reduction and precipitation of UO2 and incorporation into phosphorites. The utmost part of the buried U, however, is delivered in particulate form, most likely as bioauthigenic U which cannot be recycled in the suboxic waters overlying the anoxic sediments. In contrast to sediments in the core of the OMZ, sediments on the shelf experience frequent oxygenation episodes related to the passage of internal waves and the regular recurrence of El Niño events. These oxygenation episodes lead to the re-oxidation and remobilization of authigenic U and V. In contrast to that, the authigenic accumulation of Mo is favored by the occasional occurrence of slightly oxidizing conditions. This is most likely due to enhanced formation of sulfur intermediates necessary for pyrite formation and the increased stability of pyrite, the major Mo sink, under oxidizing conditions, compared to authigenic V and U phases. Redox oscillations in the Peruvian OMZ thus lead to a discrimination of U against Mo, a mechanism that should be considered in the interpretation of U/Mo systematics in paleo redox studies. Overall our results provide valuable constraints on how trace metal inventories of marginal sediments may respond to expanding shelf anoxia and to short term perturbations of sediment redox conditions.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 104 (9). pp. 3037-3042.
    Publication Date: 2019-09-23
    Description: Increased knowledge of the present global carbon cycle is important for our ability to understand and to predict the future carbon cycle and global climate. Approximately half of the anthropogenic carbon released to the atmosphere from fossil fuel burning is stored in the ocean, although distribution and regional fluxes of the ocean sink are debated. Estimates of anthropogenic carbon (C ant) in the oceans remain prone to error arising from (i) a need to estimate preindustrial reference concentrations of carbon for different oceanic regions, and (ii) differing behavior of transient ocean tracers used to infer C ant. We introduce an empirical approach to estimate C ant that circumvents both problems by using measurement of the decadal change of ocean carbon concentrations and the exponential nature of the atmospheric C ant increase. In contrast to prior approaches, the results are independent of tracer data but are shown to be qualitatively and quantitatively consistent with tracer-derived estimates. The approach reveals more C ant in the deep ocean than prior studies; with possible implications for future carbon uptake and deep ocean carbonate dissolution. Our results suggest that this approachs applied on the unprecedented global data archive provides a means of estimating the C ant for large parts of the world's ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 106 . pp. 20602-20609.
    Publication Date: 2019-09-23
    Description: Throughout Earth's history, the oceans have played a dominant role in the climate system through the storage and transport of heat and the exchange of water and climate-relevant gases with the atmosphere. The ocean's heat capacity is ≈1,000 times larger than that of the atmosphere, its content of reactive carbon more than 60 times larger. Through a variety of physical, chemical, and biological processes, the ocean acts as a driver of climate variability on time scales ranging from seasonal to interannual to decadal to glacial–interglacial. The same processes will also be involved in future responses of the ocean to global change. Here we assess the responses of the seawater carbonate system and of the ocean's physical and biological carbon pumps to (i) ocean warming and the associated changes in vertical mixing and overturning circulation, and (ii) ocean acidification and carbonation. Our analysis underscores that many of these responses have the potential for significant feedback to the climate system. Because several of the underlying processes are interlinked and nonlinear, the sign and magnitude of the ocean's carbon cycle feedback to climate change is yet unknown. Understanding these processes and their sensitivities to global change will be crucial to our ability to project future climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-10-25
    Description: Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus “Nitrosopumilus maritimus” strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 105 (30). pp. 10438-10443.
    Publication Date: 2016-10-25
    Description: Marine primary productivity is iron (Fe)-limited in vast regions of the contemporary oceans, most notably the high nutrient low chlorophyll (HNLC) regions. Diatoms often form large blooms upon the relief of Fe limitation in HNLC regions despite their prebloom low cell density. Although Fe plays an important role in controlling diatom distribution, the mechanisms of Fe uptake and adaptation to low iron availability are largely unknown. Through a combination of nontargeted transcriptomic and metabolomic approaches, we have explored the biochemical strategies preferred by Phaeodactylum tricornutum at growth-limiting levels of dissolved Fe. Processes carried out by components rich in Fe, such as photosynthesis, mitochondrial electron transport, and nitrate assimilation, were down-regulated. Our results show that this retrenchment is compensated by nitrogen (N) and carbon (C) reallocation from protein and carbohydrate degradation, adaptations to chlorophyll biosynthesis and pigment metabolism, removal of excess electrons by mitochondrial alternative oxidase (AOX) and non-photochemical quenching (NPQ), and augmented Fe-independent oxidative stress responses. Iron limitation leads to the elevated expression of at least three gene clusters absent from the Thalassiosira pseudonana genome that encode for components of iron capture and uptake mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-07-02
    Description: In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other's genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal-bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-07-06
    Description: EGU2010-2934 The exploration of the arctic seas require an integrated approach applying different infrastructures. In Fall 2009 German and Russian scientists performed a geo marine cruise off Kamchatka and in the western Bering Sea within the frame of the KALMAR-Project. Two main research subjects formed the scientific backbone of the cruise: The first objective focuses on the geodynamic and volcanological magmatic development of the Kuril-Kamchatka island arc system and the Kamchatka Aleutean Islands Triple-Junction. Very little is known about the composition of the mantle and the oceanic crust as well as of the seamounts including their ages. The best studied site is the Volcanologist’s Massif located between the Bering- and the Alpha Fracture Zone (Tsvetkov 1990, Volynets et al. 1992, Yogodzinsky et al. 1994), which structurally belongs to the Komandorsky Basin. The oldest rocks of the Volcanologist´s Massif show very similar trace element and isotope signatures like those rocks cropping out in the volcanoes on Kamchatka in the prolongation of the Alpha Fracture Zone (Portnyagin et al. 2005a), indicating similar conditions of magma formation. The top of the Volcanologist´s Massif is characterized by the young (〈 0.5 Ma) and hydrothermally active Piip volcano, which consists of special magnesium rich andesites ("Piip type"). Another hot site was the Meiji-Seamount which is the northernmost Seamount of the hotspot spur of the Hawaii-Emperor-Seamount chain, having an age of probably 〉 85 Ma. The only existing basement rocks from this seamount were gained during DSDP Leg 19. These are basalts with MORB like trace element and isotope signatures (Keller et al. 2000, Regelous et al. 2003). These data indicate that the Hawaii-Hotspot was at a MOR in Cretaceous time and that large volumes of depleted mantle material played a´role during the magma formation. The second objective focuses on paleo-oceanographic investigations concentrating on the sediments along the eastern continental slope of Kamchatka, in the Komandorsky Basin, and on the Shirshov Ridge in order to explore paleoclimate archives to better understand the subpolar water mass transfer and the oceanographic and climatic development in the subarctic NW-Pacific. Comparisons of Late Pleistocene and Holocene temperature changes within the near surface water masses between the NW-Pacific and the N-Atlantic resulted in a new hypothesis, the "Atlantic-Pacific seesaw" (Kiefer et al. 2001, Kim et al. 2004, Kiefer and Kienast, 2005). This Atlantic-Pacific pattern of opposite temperature variations dominates the last 60ka on millennial timescales. Modelling results of Saenko et al. (2004) support the hypothesis of the "Atlantic-Pacific seesaw" and they postulate a mechanistic connection between the two regions driven by salinity variations, which couples both regions through the thermohaline circulation. A different model relates the Holocene Atlantic-Pacific dipole to the atmospheric tele-connection between the Arctic Oscillation/N-Atlantic Oscillation and the Pacific N-American Oscillation (Kim et al. 2004). http://kalmar.ifm-geomar.de
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-02-28
    Description: EGU2011-12780 A temporary passive seismic network of 31 broad-band stations was deployed in the region around Talca and Constitución between 35°S to 36°S latitude and 71°W to 72.5°W longitude. The network was operated between March and October 2008. Thus, we recorded data prior the magnitude Mw=8.8 earthquake of 27 February 2010 at a latitude of the major slip and surface uplift. The experiment was conducted to address fundamental questions on deformation processes, crustal and mantle structures, and fluid flow. We present results of a teleseismic P receiver function study that covers the coastal region and reaches to the Andes. The aim is to determine the structure and thickness of the continental crust and constrain the state of hydration of the mantle wedge. The P-wave receiver function technique requires large teleseismic earthquakes from different distances and backazimuths. A few percent of the incident P-wave energy from a teleseismic event will be converted into S-wave (Ps) at significant and relatively sharp discontinuities beneath the station. A small converted S phase is produced that arrives at the station within the P wave coda directly after the direct P-wave. The converted Ps phase and their crustal multiples contain information about crustal properties, such as Moho depth and the crustal vp/vs ratio. We use teleseismic events with magnitudes mb 〉 5.5 at epicentral distances between 30° and 95° to examine P-to-S converted seismic phases. Our preliminary results provide new information about the thickness of the continental crust beneath the coastal region in Central Chile. At most of the stations we observed significant energy from P to S converted waves between 4 and 5 s after the direct P-wave within a positive phase interpreted as the Moho, occurring at 35 to 40 km. The great Maule earthquake of 27 February 2010 nucleated up-dip of the continental Moho. The rupture of this earthquake seems to have propagated down-dip of the Moho. The Moho reflection show a positive polarity, indicating that the mantle is either dry or only moderately hydrated. We observed converted energy from an intracrustal boundary at around 2 s that disappears near the coast. Further, positive polarity peaks occur that are possibly caused by the down going plate.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-23
    Description: EGU2011-8738 At present, the Arctic is responding faster to global warming than most other areas on earth, as indicated by rising air temperatures, melting glaciers and ice sheets and a decline of the sea ice cover. As part of the meridional overturning circulation which connects all ocean basins and influences global climate, northward flowing Atlantic Water is the major means of heat and salt advection towards the Arctic where it strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ca. 150 years. To reconstruct the history of temperature variations in the Fram Strait Branch of the Atlantic Current we analyzed a marine sediment core from the western Svalbard margin. In multidecadal resolution the Atlantic Water temperature record derived from planktic foraminifer associations and Mg/Ca measurements shows variations corresponding to the well-known climatic periods of the last millennium (Medieval Climate Anomaly, Little Ice Age, Modern/Industrial Period). We find that prior to the beginning of atmospheric CO2 rise at ca. 1850 A.D. average summer temperatures in the uppermost Atlantic Water entering the Arctic Ocean were in the range of 3-4.5°C. Within the 20th century, however, temperatures rose by ca. 2°C and eventually reached the modern level of ca. 6°C. Such values are unprecedented in the 1000 years before and are presumably linked to the Arctic Amplification of global warming. Taking into account the ongoing rise of global temperatures, further warming of inflowing Atlantic Water is expected to have a profound influence on sea ice and air temperatures in the Arctic.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria .
    Publication Date: 2012-07-06
    Description: EGU2011-1847-3 Lake Van is a lake by volume of 607 km3 and a maximum depth of 450 meters in a tectonically active zone in eastern Anatolia, Turkey. In summer 2010, Lake Van was the target of a deep drilling campaign (PaleoVan) in the frame of ICDP (International Continental Scientific Drilling Program). Two sites were drilled based on reflection seismic data collected during a seismic campaign in 2004. Here we present a first joint interpretation of the seismic and drilling data. Interpretation of seismic reflection data from lake reveals three physiographic provinces: a lacustrine shelf, a lacustrine slope, and a deep, relatively flat lake basin. The most prominent features of the lacustrine shelf and slope are prograding deltaic sequences, numerous unconformities, submerged channels, as well as closely spaced U- and/or V-shaped depressions, reflecting the variable lake level history of Lake Van. The seismic units of the shelf are dominantly composed of low-to-good continuity, variable amplitude reflections interpreted as fluvial deposits. The lake consists of three prominent basins (Tatvan, Deveboynu, and Northern Basins), separated by basement highs or ridges (Ahlat Ridge). The seismic units corresponding to these basins mainly consist of low to very high amplitude, well-stratified reflection patterns. Chaotic reflections are seen in parts of these basins. The Deveboynu Basin consists mainly of chaotic reflections. The Tatvan and Northern Basins are characterized by an alternating succession of well-stratified and chaotic reflecting layers. The chaotic seismic facies are interpreted as slump and slide deposits, which are probably the result of quick lake level fluctuations and/or earthquakes. The moderateto high amplitude, well-stratified facies seen in the deep parts of the basins away from the terrigenous sediment sources are interpreted as lacustrine deposits and tephra layers. The total sediment thickness in the deep parts of the lake is over 400 m. Prominent clinoforms indicate the initial flooding of Lake Van about 500 ka ago. The acoustic basement and the sediments lying on top of the basement in the southern part of the lake are disrupted by various intrusions and extrusions suggesting active volcanism. Synthetic seismograms calculated based on core logging, wire-line logging and check shot data will allow the correlation between seismic and drill data. This approach will allow extrapolating the stratigraphy from the wells to 3D-space by using the seismic data.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-23
    Description: EGU2011-4235 The Arctic is undergoing rapid environmental and economic transformations. Recent climate warming, which is simplifying access to oil and gas resources, enabling trans Arctic shipping, and shifting the distribution of harvestable resources, has brought the Arctic Ocean to the top of national and international political agendas. Scientific knowledge of the present status of the Arctic Ocean and the process-based understanding of the mechanics of change are urgently needed to make useful predictions of future conditions throughout the Arctic region. These are required to plan for the consequences of climate change. A step towards improving our capacity to predict future Arctic change was undertaken with the Second International Conference on Arctic Research Planning (ICARP II) meetings in 2005 and 2006, which brought together scientists, policymakers, research managers, Arctic residents, and other stakeholders interested in the future of the Arctic region. The Arctic in Rapid Transition (ART) Initiative developed out of the synthesis of the several resulting ICARP II science plans specific to the marine environment. This process started in October 2008 and has been driven by early career scientists. The ART Initiative is an integrative, international, multi-disciplinary, long-term pan-Arctic network to study changes and feedbacks with respect to physical characteristics and biogeochemical cycles in the Arctic Ocean in a state of rapid transition and its impact on the biological production. The first ART workshop was held in Fairbanks, Alaska, in November 2009 with 58 participants from 9 countries. Workshop discussions and reports were used to develop a science plan that integrates, updates, and develops priorities for Arctic Marine Science over the next decade. The science plan was accepted and approved by the International Arctic Science Committee (IASC) Marine Group, the former Arctic Ocean Science Board. The second ART workshop was held in Winnipeg, Canada, in October 2010 with 20 participants from 7 countries to develop the implementation plan. Our focus within the ART Initiative will be to bridge gaps in knowledge not only across disciplinary boundaries (e.g., biology, geochemistry, geology, meteorology, physical oceanography), but also across geographic (e.g., international boundaries, shelves, margins, and the central Arctic Ocean) and temporal boundaries (e.g., alaeo/geologic records, current process observations, and future modeling studies). This approach of the ART Initiative will provide a means to better understand and predict change, particularly the consequences for biological productivity, and ultimate responses in the Arctic Ocean system. More information about the ART Initiative can be found at http://aosb.arcticportal.org/art.html.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 106 (31). pp. 12788-12793.
    Publication Date: 2016-11-14
    Description: Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature–size relationships (i.e., Bergmann's rule, James' rule and Temperature–Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 102 (8). pp. 2826-2831.
    Publication Date: 2016-11-14
    Description: Contemporary climate change is characterized both by increasing mean temperature and increasing climate variability such as heat waves, storms, and floods. How populations and communities cope with such climatic extremes is a question central to contemporary ecology and biodiversity conservation. Previous work has shown that species diversity can affect ecosystem functioning and resilience. Here, we show that genotypic diversity can replace the role of species diversity in a species-poor coastal ecosystem, and it may buffer against extreme climatic events. In a manipulative field experiment, increasing the genotypic diversity of the cosmopolitan seagrass Zostera marina enhanced biomass production, plant density, and faunal abundance, despite near-lethal water temperatures due to extreme warming across Europe. Net biodiversity effects were explained by genotypic complementarity rather than by selection of particularly robust genotypes. Positive effects on invertebrate fauna suggest that genetic diversity has second-order effects reaching higher trophic levels. Our results highlight the importance of maintaining genetic as well as species diversity to enhance ecosystem resilience in a world of increasing uncertainty.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 109 (44). pp. 18192-18197.
    Publication Date: 2019-09-23
    Description: Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid–base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H+-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pHe and pHi) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO2 conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO2. Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pHe whenever seawater pH changes. However, measurements of pHi demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na+ and HCO3−, suggesting a bicarbonate buffer mechanism involving secondary active Na+-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pHi enables calcification to proceed despite decreased pHe. However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria .
    Publication Date: 2012-07-06
    Description: EGU2011-13199 Images of crustal construction provide a key to understand the interplay of magmatism and tectonism while oceanic crust is build up. Bathymetric data show that the crustal construction is highly variable. Areas that are dominated by magmatic processes are adjacent to areas that are highly tectonised and where mantle rocks were found. The Mid-Atlantic Ridge at 22°N shows this high variability along the ridge axis, within the TAMMAR segment, and from segment to segment. However, this strong variability occurs also off-axis, spreading parallel, representing different times in the same area of the ridge. A fracture zone, with limited magma supply, has been replaced by a segment centre with a high magmatic budget. Roughly 4.5 million years ago, the growing magmatic active TAMMAR segment, propagated into the fracture zone, started the migration of the ridge offset to the south, and stopped the formation of core complexes. We present data from seismic refraction and wide-angle reflection profiles that surveyed the crustal structure across the ridge crest of the TAMMAR segment. These yield the crustal structure at the segment centre as a function of melt supply. The results suggest that crust is ~8 km thick near the ridge and decreases in thickness with offset to the ridge axis. Seismic layer 3 shows profound changes in thickness and becomes rapidly one kilometre thicker approx. 5 million years ago. This correlates with gravimetric data and the observed “Bull’s eye” anomaly in that region. Our observations support a temporal change from thick lithosphere with oceanic core complex formation to thin lithosphere with focussed mantle upwelling and segment growing. The formation of ‘thick-crust’ volcanic centre seems to have coincided with the onset of propagation 4.5 million years ago.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 6081 .
    Publication Date: 2012-07-06
    Description: EGU2011-6081 Natural stable isotopes are a powerful tool in marine sciences to investigate biological processes, such as present and past nutrient utilization. In this study we present the first dissolved silicon isotope data in the upwelling area off Peru, where one of the world’s largest Oxygen Minimum Zones (OMZ) is located. Silicon is the most important component required for phytoplankton (diatom) growth, which dominates primary productivity in this region. Stable Si isotopes are fractionated during diatom growth in that the lighter Si isotopes are preferentially incorporated into diatoms with a fractionation factor of -1.1 promille. The Si isotope composition of dissolved silicic acid of the corresponding surface waters is therefore left isotopically heavier. The Si isotope composition, 30Si/28Si, is expressed as δ30Si values, which stand forh deviations from a given standard (NBS28). Investigation of the dissolved seawater Si isotope composition thus provides a measure for the utilization and, combined with information on the Si isotope composition of the water masses upwelling off Peru, it is a measure for the supply pathways of Si to the coastal upwelling centres. Surface waters on the shelf off Peru are mainly fed by the Equatorial Undercurrent, which mainly consists of waters originating from the western and Central Pacific and which has a characteristic δ30Si of +1.5 promille. In areas and during phases of intense upwelling the fractionation of Si isotopes was observed to be weaker due to upwelling-driven supply of less fractionated Si (δ30Si = 1.7 promille, from water depths of around 100-150 m, whereas under weak upwelling conditions fractionation is higher (δ30Si ~3 promille due to a more complete utilization of the available dissolved silicate. The distribution of dissolved δ30Si correlates strongly with particulate biogenic silicate (opal) concentrations in that highest opal concentrations in the surface waters show the lowest δ30Si values thus strongest upwelling intensity. The most extreme δ30Si values in surface waters (δ30Si = 4.5 promille are observed offshore where silicic acid concentrations are nearly zero. Furthermore we compare the δ30Si data with the dissolved nitrogen isotope distribution, which in addition to nitrate utilization is mainly influenced by denitrification and annamox processes in the OMZ. Combined silicon and nitrogen isotope compositions can thus help to disentangle different fractionation processes within the nitrogen cycle.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 2455 .
    Publication Date: 2012-07-06
    Description: EGU2011-2455 The current interglacial has gone through a variety of warmer and colder periods. Consistent with the decreasing solar insolation during the Holocene, warmest conditions have occurred particularly within its earliest phase. We studied high-resolution sediment sequences from the Western Svalbard margin covering the last ca 10,000 years in order to reconstruct the variations of Atlantic Water advection to the Arctic, the sea ice extent, and the structure of the water column on the Westspitsbergen continental margin. The Fram Strait, often referred to as the Arctic Gateway, is the only deep-water passage for Atlantic-derived water masses to enter the Arctic Ocean. Northward advection of relatively warm and saline Atlantic Water masses keeps the eastern part of the Fram Strait ice-free all year. It therefore plays a crucial role for the heat budget of the Arctic. A multiproxy data set including geochemical, micropaleontological, and sedimentological parameters was established with centennial to multidecadal time resolution. Records of foraminiferal oxygen and carbon isotopes, planktic foraminifer assemblages, and the amount of ice rafted debris clearly reveal distinct variations between climatically warmer and colder intervals throughout this period. Planktic foraminifer assemblages reveal warmest conditions for the early Holocene period (ca 10-8 ka). A second warming pulse is detected between 5 and 6 ka. In the second half of the Holocene, increased IRD contents are indicative of a significant cooling trend. Despite of the decreasing solar insolation planktic foraminiferal assemblages suggest a return of slightly strengthened Atlantic Water advection around 3 to 2 ka and a strong warming event in the present, anthropogenically influenced period.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 108 (52). E1484-E1490.
    Publication Date: 2016-10-25
    Description: Microbial degradation of substrates to terminal products is commonly understood as a unidirectional process. In individual enzymatic reactions, however, reversibility (reverse reaction and product back flux) is common. Hence, it is possible that entire pathways of microbial degradation are associated with back flux from the accumulating product pool through intracellular intermediates into the substrate pool. We investigated carbon and sulfur back flux during the anaerobic oxidation of methane (AOM) with sulfate, one of the least exergonic microbial catabolic processes known. The involved enzymes must operate not far from the thermodynamic equilibrium. Such an energetic situation is likely to favor product back flux. Indeed, cultures of highly enriched archaeal–bacterial consortia, performing net AOM with unlabeled methane and sulfate, converted label from 14C-bicarbonate and 35S-sulfide to 14C-methane and 35S-sulfate, respectively. Back fluxes reached 5% and 13%, respectively, of the net AOM rate. The existence of catabolic back fluxes in the reverse direction of net reactions has implications for biogeochemical isotope studies. In environments where biochemical processes are close to thermodynamic equilibrium, measured fluxes of labeled substrates to products are not equal to microbial net rates. Detection of a reaction in situ by labeling may not even indicate a net reaction occurring in the direction of label conversion but may reflect the reverse component of a so far unrecognized net reaction. Furthermore, the natural isotopic composition of the substrate and product pool will be determined by both the forward and back flux. This finding may have to be considered in the interpretation of stable isotope records.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 108 (48). pp. 19276-19281.
    Publication Date: 2019-09-23
    Description: Large-scale transcription profiling via direct cDNA sequencing provides important insights as to how foundation species cope with increasing climatic extremes predicted under global warming. Species distributed along a thermal cline, such as the ecologically important seagrass Zostera marina, provide an opportunity to assess temperature effects on gene expression as a function of their long-term adaptation to heat stress. We exposed a southern and northern European population of Zostera marina from contrasting thermal environments to a realistic heat wave in a common-stress garden. In a fully crossed experiment, eight cDNA libraries, each comprising ∼125 000 reads, were obtained during and after a simulated heat wave, along with nonstressed control treatments. Although gene-expression patterns during stress were similar in both populations and were dominated by classical heat-shock proteins, transcription profiles diverged after the heat wave. Gene-expression patterns in southern genotypes returned to control values immediately, but genotypes from the northern site failed to recover and revealed the induction of genes involved in protein degradation, indicating failed metabolic compensation to high sea-surface temperature. We conclude that the return of gene-expression patterns during recovery provides critical information on thermal adaptation in aquatic habitats under climatic stress. As a unifying concept for ecological genomics, we propose transcriptomic resilience, analogous to ecological resilience, as an important measure to predict the tolerance of individuals and hence the fate of local populations in the face of global warming.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 3514 .
    Publication Date: 2012-07-06
    Description: We determined the isotopic composition of neodymium (Nd) and lead (Pb) of past seawater to reconstruct water mass exchange and erosional input between the Arctic Ocean and the Norwegian-Greenland Seas over the past 5 Ma. For this purpose, sediments of ODP site 911 (leg 151) located at 900 m water depth on the Yermak Plateau in the Fram Strait were used. The paleo-seawater variability of Nd and Pb isotopes was extracted from the sea water-derived metal oxide coatings on the sediment particles following the leaching method of Gutjahr et al. (2007). All radiogenic isotope data were acquired by Multi-Collector (MC) ICP-MS. The site 911 stratigraphy of Knies et al. (2009) was applied. Surface sediment Sr and Nd isotope data, as well as downcore Sr isotope data obtained on the same leaches are close to seawater and confirm the seawater origin of the Nd and Pb isotope signatures. The deep water Nd isotope time series extracted from site 911 was in general more radiogenic ("Nd = -7.5 to -10) than present day deep water ("Nd = -9.8 to -11.8) in the area of the Fram Strait (Andersson et al., 2008) and does not show a systematic trend with time. In contrast, the radiogenic isotope composition of Pb evolved from 206Pb/204Pb ratios around 18.7 to more radiogenic values around 19.2 between 2 Ma and today. The data indicate that mixing of water masses from the Arctic Ocean and the Norwegian-Greenland Seas has controlled the Nd isotope signatures of deep waters on the Yermak Plateau over the past 5 Ma. Prior to 1.7 Ma the Nd isotope signatures on the Yermak Plateau were less radiogenic than waters from the same depth in the central Arctic Ocean (Haley et al., 2008) pointing to a greater influence from the Norwegian-Greenland Seas. After 1.7 Ma the central Arctic and Yermak Plateau data have varied around similar values indicating water mass mixing overall similar to today. In contrast, the Pb isotope composition of deep waters in the Fram Strait appears to have been dominated by weathering inputs from glacially weathering old continental landmasses, such as Greenland or parts of Svalbard since 2 Ma. A similar control over the Pb isotope evolution of seawater since the onset of Northern Hemisphere Glaciation was recorded by ferromanganese crusts that grew from North Atlantic DeepWater in the western North Atlantic. References: Gutjahr, M., Frank, M., Stirling, C.H., Klemm, V., van de Flierdt, T. and Halliday, A.N. (2007): Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments.- Chemical Geology 242, 351-370 Haley B. A., M. Frank, R.F. Spielhagen and A. Eisenhauer (2008): Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nature Geoscience 1, 68–72 Andersson, P.S., Porcelli, D., Frank, M., Björk, G., Dahlqvist, R. and Gustafsson, Ö. (2008): Neodymium isotopes in seawater from the Barents Sea and Fram Strait Arctic- Atlantic gateways.- Geochim. Cosmochim. Acta 72, 2854-2867 Knies, J., J. Matthiessen, C. Vogt, J.S. Laberg, B.O. Hjelstuen, M.Smelror, E. Larsen, K. Andreassen, T. Eidvin and T.O. Vorren (2009): The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy - Quaternary Science Reviews 28, 9-10, 812-829
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Copernicus
    In:  Scientific Drilling, 5 . pp. 63-66.
    Publication Date: 2016-08-03
    Description: In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German) returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gap between conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges) and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea without relying on the services of expensive drilling vessels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Fluid Mechanics, 26 (1). pp. 617-659.
    Publication Date: 2020-06-09
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 104 (14). pp. 6049-6054.
    Publication Date: 2016-11-14
    Description: Lytic viral infection and programmed cell death (PCD) are thought to represent two distinct death mechanisms in phytoplankton, unicellular photoautotrophs that drift with ocean currents. Here, we demonstrate an interaction between autocatalytic PCD and lytic viral infection in the cosmopolitan coccolithophorid, Emiliania huxleyi. Successful infection of E. huxleyi strain 374 with a lytic virus, EhV1, resulted in rapid internal degradation of cellular components, a dramatic reduction in the photosynthetic efficiency (F-v/F-m), and an up-regulation of metacaspase protein expression, concomitant with induction of caspase-like activity. Caspase activation was confirmed through in vitro cleavage in cell extracts of the fluorogenic peptide substrate, IETD-AFC, and direct, in vivo staining of cells with the fluorescently labeled irreversible caspase inhibitor, FITC-VAD-FMK. Direct addition of z-VAD-FMK to infected cultures abolished cellular caspase activity and protein expression and severely impaired viral production. The absence of metacaspase protein expression in resistant E. huxleyi strain 373 during EhV1 infection further demonstrated the critical role of these proteases in facilitating viral lysis. Together with the presence of caspase cleavage recognition sequences within virally encoded proteins, we provide experimental evidence that coccolithoviruses induce and actively recruit host metacaspases as part of their replication strategy. These findings reveal a critical role for metacaspases in the turnover of phytoplankton biomass upon infection with viruses and point to coevolution of host-virus interactions in the activation and maintenance of these enzymes in planktonic, unicellular protists.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-01-27
    Description: Coccolithophores are an important component of the Earth system, and, as calcifiers, their possible susceptibility to ocean acidification is of major concern. Laboratory studies at enhanced pCO2 levels have produced divergent results without overall consensus. However, it has been predicted from these studies that, although calcification may not be depressed in all species, acidification will produce "a transition in dominance from more to less heavily calcified coccolithophores"Ridgwell A, et al., (2009) Biogeosciences 6:2611-2623. A recent observational study Beaufort L, et al., (2011) Nature 476:80-83 also suggested that coccolithophores are less calcified in more acidic conditions.We present the results of a large observational study of coccolithophore morphology in the Bay of Biscay. Samples were collected once a month for over a year, along a 1,000-km-long transect. Our data clearly show that there is a pronounced seasonality in the morphotypes of Emiliania huxleyi, the most abundant coccolithophore species. Whereas pH and CaCO 3saturation are lowest in winter, the E. huxleyi population shifts from 〈10% (summer) to >90% (winter) of the heavily calcified form. However, it is unlikely that the shifts in carbonate chemistry alone caused the morphotype shift. Our finding that the most heavily calcified morphotype dominates when conditions are most acidic is contrary to the earlier predictions and raises further questions about the fate of coccolithophores in a high-CO2 world.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 111 (4). pp. 1438-1442.
    Publication Date: 2021-04-23
    Description: Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 110 (44). pp. 17668-17673.
    Publication Date: 2014-01-27
    Description: Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 110 (49). pp. 19737-19741.
    Publication Date: 2016-10-25
    Description: Northern Hemisphere sea ice has been declining sharply over the past decades and 2012 exhibited the lowest Arctic summer sea-ice cover in historic times. Whereas ongoing changes are closely monitored through satellite observations, we have only limited data of past Arctic sea-ice cover derived from short historical records, indirect terrestrial proxies, and low-resolution marine sediment cores. A multicentury time series from extremely long-lived annual increment-forming crustose coralline algal buildups now provides the first high-resolution in situ marine proxy for sea-ice cover. Growth and Mg/Ca ratios of these Arctic-wide occurring calcified algae are sensitive to changes in both temperature and solar radiation. Growth sharply declines with increasing sea-ice blockage of light from the benthic algal habitat. The 646-y multisite record from the Canadian Arctic indicates that during the Little Ice Age, sea ice was extensive but highly variable on subdecadal time scales and coincided with an expansion of ice-dependent Thule/Labrador Inuit sea mammal hunters in the region. The past 150 y instead have been characterized by sea ice exhibiting multidecadal variability with a long-term decline distinctly steeper than at any time since the 14th century.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-10-25
    Description: Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS), 108 (4). pp. 1496-1500.
    Publication Date: 2019-03-05
    Description: The use of molecular methods is altering our understanding of the microbial biosphere and the complexity of the tree of life. Here, we report a newly discovered uncultured plastid-bearing eukaryotic lineage named the rappemonads. Phylogenies using near-complete plastid ribosomal DNA (rDNA) operons demonstrate that this group represents an evolutionarily distinct lineage branching with haptophyte and cryptophyte algae. Environmental DNA sequencing revealed extensive diversity at North Atlantic, North Pacific, and European freshwater sites, suggesting a broad ecophysiology and wide habitat distribution. Quantitative PCR analyses demonstrate that the rappemonads are often rare but can form transient blooms in the Sargasso Sea, where high 16S rRNA gene copies mL-1 were detected in late winter. This pattern is consistent with these microbes being a member of the rare biosphere, whose constituents have been proposed to play important roles under ecosystem change. Fluorescence in situ hybridization revealed that cells from this unique lineage were 6.6 ± 1.2 x 5.7 ± 1.0 μm, larger than numerically dominant open-ocean phytoplankton, and appear to contain two to four plastids. The rappemonads are unique, widespread, putatively photosynthetic algae that are absent from present-day ecosystem models and current versions of the tree of life.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-03-05
    Description: Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla , a widely distributed marine picoprasinophyte (〈2 μm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core lightinput and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photo-synthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS), 107 (33). pp. 14679-14684.
    Publication Date: 2019-09-23
    Description: Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed fromonly the latter two lineages. Tiny "picoplanktonic" members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed picoprymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25 of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS), 103 (31). pp. 11647-11652.
    Publication Date: 2019-09-23
    Description: The green lineage is reportedly 1,500 million years old, evolving shortly after the endosymbiosis event that gave rise to early photosynthetic eukaryotes. In this study, we unveil the complete genome sequence of an ancient member of this lineage, the unicellular green alga Ostreococus tauri (Prasinophyceae), This cosmopolitan marine primary producer is the world's smallest free-living eukaryote known to date. Features likely reflecting optimization of environmentally relevant pathways, including resource acquisition, unusual photosynthesis apparatus, and genes potentially involved in C4 photosynthesis, were observed, as was downsizing of many gene families. Overall, the 12.56-Mb nuclear genome has an extremely high gene density, in part because of extensive reduction of intergenic regions and other forms of compaction such as gene fusion. However, the genome is structurally complex. It exhibits previously unobserved levels of heterogeneity for a eukaryote. Two chromosomes differ structurally from the other eighteen. Both have a significantly biased G+C content, and, remarkably, they contain the majority of transposable elements. Many chromosome 2 genes also have unique codon usage and splicing, but phylogenetic analysis and composition do not support alien gene origin. In contrast, most chromosome 19 genes show no similarity to green lineage genes and a large number of them are specialized in cell surface processes. Taken together, the complete genome sequence, unusual features, and downsized gene families, make O. tauri an ideal model system for research on eukaryotic genome evolution, including chromosome specialization and green lineage ancestry. © 2006 by The National Academy of Sciences of the USA.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS), 111 (10). pp. 3871-3876.
    Publication Date: 2019-03-05
    Description: Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences, 105 (52). pp. 20776-20780.
    Publication Date: 2021-08-24
    Description: By the end of this century, anthropogenic carbon dioxide (CO2) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature. Reduced aerobic and locomotory scope in warm, high-CO2 surface waters will presumably impair predator–prey interactions with cascading consequences for growth, reproduction, and survival. Moreover, as the OML shoals, squids will have to retreat to these shallower, less hospitable, waters at night to feed and repay any oxygen debt that accumulates during their diel vertical migration into the OML. Thus, we demonstrate that, in the absence of adaptation or horizontal migration, the synergism between ocean acidification, global warming, and expanding hypoxia will compress the habitable depth range of the species. These interactions may ultimately define the long-term fate of this commercially and ecologically important predator.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences, 104 (31). pp. 12948-12950.
    Publication Date: 2021-08-27
    Description: A unique 16-year time series of deep video surveys in Monterey Bay reveals that the Humboldt squid, Dosidicus gigas, has substantially expanded its perennial geographic range in the eastern North Pacific by invading the waters off central California. This sustained range expansion coincides with changes in climate-linked oceanographic conditions and a reduction in competing top predators. It is also coincident with a decline in the abundance of Pacific hake, the most important commercial groundfish species off western North America. Recognizing the interactive effects of multiple changes in the environment is an issue of growing concern in ocean conservation and sustainability research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 106 (49). pp. 20578-20583.
    Publication Date: 2016-10-25
    Description: The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO2, accelerating global warming.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 106 . pp. 197-202.
    Publication Date: 2016-11-14
    Description: Fisheries can have a large impact on marine ecosystems, because the effects of removing large predatory fish may cascade down the food web. The implications of these cascading processes on system functioning and resilience remain a source of intense scientific debate. By using field data covering a 30-year period, we show for the Baltic Sea that the underlying mechanisms of trophic cascades produced a shift in ecosystem functioning after the collapse of the top predator cod. We identified an ecological threshold, corresponding to a planktivore abundance of ≈17 × 1010 individuals, that separates 2 ecosystem configurations in which zooplankton dynamics are driven by either hydroclimatic forces or predation pressure. Abundances of the planktivore sprat above the threshold decouple zooplankton dynamics from hydrological circumstances. The current strong regulation by sprat of the feeding resources for larval cod may hinder cod recovery and the return of the ecosystem to a prior state. This calls for the inclusion of a food web perspective in management decisions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 104 . pp. 6556-6561.
    Publication Date: 2016-10-25
    Description: The Younger Dryas cold interval represents a time when much of the Northern Hemisphere cooled from �12.9 to 11.5 kiloyears B.P. The cause of this event, which has long been viewed as the canonical example of abrupt climate change, was initially attributed to the routing of freshwater to the St. Lawrence River with an attendant reduction in Atlantic meridional overturning circulation. However, this mechanism has recently been questioned because current proxies and dating techniques have been unable to confirm that eastward routing with an increase in freshwater flux occurred during the Younger Dryas. Here we use new geochemical proxies (�Mg/Ca, U/Ca, and 87Sr/86Sr) measured in planktonic foraminifera at the mouth of the St. Lawrence estuary as tracers of freshwater sources to further evaluate this question. Our proxies, combined with planktonic �18Oseawater and �13C, confirm that routing of runoff from western Canada to the St. Lawrence River occurred at the start of the Younger Dryas, with an attendant increase in freshwater flux of 0.06 +- 0.02 Sverdrup (1 Sverdrup = 106 m3s-1). This base discharge increase is sufficient to have reduced Atlantic meridional overturning circulation and caused the Younger Dryas cold interval. In addition, our data indicate subsequent fluctuations in the freshwater flux to the St. Lawrence River of ~0.06–0.12 Sverdrup, thus explaining the variability in the overturning circulation and climate during the Younger Dryas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-11-08
    Description: EGU2011-12864 The Woodlark Basin east of Papua New Guinea represents one of the few places on Earth where a spreading axis propagates into continental crust. This special tectonic setting allows insights into the evolution of magma composition as continental extension and break-up changes to the formation of ocean crust. We report here geochemical results on samples collected in 2009 from the four segments closest to the continental breakup, from segment 1 which abuts the detachment fault responsible for continental extension on Moresby Seamount in the West, to segment 4, representing mature oceanic crust in the East. A total of 208 glass samples have been analyzed for their major (EMPA) and trace element (LA-ICPMS) compositions. The data show strong E-W variations. Samples ranging from tholeiitic basalt and basaltic andesite to andesite and rhyolite are found on Segment 1. They have generally high alkali values and a wide range of trace element contents and ratios. Segments 2 to 4 magmas in contrast only comprise tholeiitic basalt with lower alkali contents and a more restricted range of trace element chemistry. The geochemical differences between the segments cannot be attributed to differentiation processes alone, and different sources are required. High Ba/La, (La/Sm)N, Rb/Sr, and Th/La on Segment 1 suggest a derivation from an enriched mantle source, while low Nd/Pb and Nb/U suggest that some of the enrichment may also reflect the influence of continental crust during magma genesis. Whether this continental signature is present in the form of recycled material in the mantle or as rafted continental blocks in the axial region is at present unclear. In contrast to rocks from segment 1, trace element compositions of volcanic glasses from segments 2 to 4 show a stronger MORB signature, presumably reflecting more mature spreading in this part of the basin. The influence of continental material appears to be minimal, suggesting that uncontaminated asthenosphere quickly flows into the rift and/or that continental blocks are not retained in the axial region for long time periods following the rifting-spreading transition.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-11-08
    Description: The pelagic ocean harbors one of the largest ecosystems on Earth. It is responsible for approximately half of global primary production, sustains worldwide fisheries, and plays an important role in the global carbon cycle. Ocean warming caused by anthropogenic climate change is already starting to impact the marine biota, with possible consequences for ocean productivity and ecosystem services. Because temperature sensitivities of marine autotrophic and heterotrophic processes differ greatly, ocean warming is expected to cause major shifts in the flow of carbon and energy through the pelagic system. Attempts to integrate such biological responses into marine ecosystem and biogeochemical models suffer from a lack of empirical data. Here, we show, using an indoor-mesocosm approach, that rising temperature accelerates respiratory consumption of organic carbon relative to autotrophic production in a natural plankton community. Increasing temperature by 2-6 degrees C hence decreased the biological drawdown of dissolved inorganic carbon in the surface layer by up to 31%. Moreover, warming shifted the partitioning between particulate and dissolved organic carbon toward an enhanced accumulation of dissolved compounds. In line with these findings, the loss of organic carbon through sinking was significantly reduced at elevated temperatures. The observed changes in biogenic carbon flow have the potential to reduce the transfer of primary produced organic matter to higher trophic levels, weaken the ocean's biological carbon pump, and hence provide a positive feedback to rising atmospheric CO2.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...