ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Potsdam
  • 2015-2019  (28)
  • 1
    Call number: PIK A 130-18-91684
    In: Sachbericht
    Type of Medium: Monograph available for loan
    Pages: 104 Seiten , Illustrationen, Diagramme, Karten
    Series Statement: Sachbericht
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI G8-20-93468
    Type of Medium: Dissertations
    Pages: XIII, 151, A28 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Table of contents Abstract Zusammenfassung Abbreviations and Nomenclature 1. Introduction 1.1 Scientific Background 1.1.1 Climate and Permafrost 1.1.2 Remote Sensing 1.1.3 Research Questions 1.2 General Approach 1.3 Thesis Structure 1.4 Author’ s contributions 1.4.1 Chapter 2 1.4.2 Chapter 3 1.4.3 Chapter 4 1.4.4 Chapter 5 1.4.5 Appendix Paper 1 2. Detection of landscape dynamics in the Arctic Lena Delta withtemporally dense Landsat time-series Stacks 2.1 Abstract 2.2 Introduction 2.3 Study Area and Data 2.3.1 Study Area 2.3.2 Data 2.3.3 Methods/processing 2.4 Results 2.4.1 Regional Scale changes 2.4.2 Local scale changes 2.5 Discussion 2.5.1 Regional scale changes 2.5.2 Local scale changes 2.5.3 Data quality 2.5.4 Data usage and outlook 2.6 Conclusion 2.7 Data Archive 2.8 Acknowledgements 2.9 Appendix A. Supplementary Data 3. Landsat-Based Trend Analysis of Lake Dynamics across NorthernPermafrost Regions 3.1 Abstract 3.2 Introduction 3.3 Study Sites 3.3.1 Alaska North Slope (NSL) 3.3.2 Alaska Kobuk-Selawik Lowlands (AKS) 3.3.3 Central Yakutia (CYA) 3.3.4 Kolyma Lowland (KOL) 3.4 Data and Methods 3.4.1 Data and Trend Analysis 3.4.2 Pixel-Based Machine-Leaming Classification 3.4.3 Object-Based Image Analysis 3.4.4 Data Quality and Post-Processing 3.4.5 Calculation of Lake Change Statistics 3.5 Results 3.5.1 NSL (Alaska North Slope) 3.5.2 AKS (Alaska Kobuk-Selawik Lowlands) 3.5.3 CYA (Central Yakutia) 3.5.4 KOL (Kolyma Lowland) 3.6 Discussion 3.6.1 Data Analysis 3.6.2 Comparison of Sites and Prior Studies 3.7 Conclusions 3.8 Supplementary Materials 3.9 Acknowledgements 3.10 Appendix A 4. Remotely sensing recent permafrost region disturbances across Arcticto Subarctic transects 4.1 Abstract 4.2 Introduction 4.3 Results 4.3.1 Lakes 4.3.2 Retrogressive Thaw Slumps 4.3.3 Wildfire 4.4 Discussion 4.5 Methods 4.5.1 Remote Sensing Data Processing 4.5.2 Auxiliary Data Sources 5. Tundra landform and Vegetation productivity trend maps for theArctic Coastal Plain of northern Alaska 5.1 Abstract 5.2 Background & Summary 5.3 Methods 5.3.1 Polygonal tundra geomorphology mapping 5.3.2 Image processing 5.3.3 Image Classification 5.3.4 Decadal scale NDVI trend analysis 5.4 Data Records 5.5 Technical Validation 5.5.1 Tundra Geomorphology Map 5.5.2 NDVI Trend Map 5.6 Data Citation 6. Discussion/Synthesis 6.1 Landsat-based trend analysis 6.1.1 Spatial Scale 6.1.2 Time series analysis 6.1.3 Model complexity 6.2 Mapping of permafrost landscape dynamics 6.2.1 Lake dynamics 6.2.2 Wildfire 6.2.3 Retrogressive Thaw Slumps 6.3 Pan-arctic scale distribution and consequences of changes inpermafrost 6.4 Outlook Bibliography A-1. Appendix: Reduced arctic tundra productivity linked with landform and climate change interactions A-1.1 Abstract A-1.2 Introduction A-1.3 Methods A-1.4 Results A-1.5 Discussion Danksagung/Acknowledgements Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: M 20.93496
    Description / Table of Contents: According to the classical plume hypothesis, mantle plumes are localized upwellings of hot, buoyant material in the Earth’s mantle. They have a typical mushroom shape, consisting of a large plume head, which is associated with the formation of voluminous flood basalts (a Large Igneous Province) and a narrow plume tail, which generates a linear, age-progressive chain of volcanic edifices (a hotspot track) as the tectonic plate migrates over the relatively stationary plume. Both plume heads and tails reshape large areas of the Earth’s surface over many tens of millions of years. However, not every plume has left an exemplary record that supports the classical hypothesis. The main objective of this thesis is therefore to study how specific hotspots have created the crustal thickness pattern attributed to their volcanic activities. Using regional geodynamic models, the main chapters of this thesis address the challenge of deciphering the three individual (and increasingly complex) Réunion, Iceland, and Kerguelen hotspot histories,…
    Type of Medium: Dissertations
    Pages: 104 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: M 20.93497
    Description / Table of Contents: The Himalayas are a region that is most dependent, but also frequently prone to hazards from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population in recent decades. One source of hazard has attracted scientific research in particular in the past two decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic consequences for downstream communities and infrastructure. Such GLOFs can suddenly release several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The key challenge to test this notion are the high altitudes of 〉4000 m, at which lakes occur, making field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed quantification of their frequency and their response to atmospheric warming. Robustly quantifying the magnitude and frequency of GLOFs is essential for risk assessment and management along mountain rivers, not least to implement their return periods in building design codes. [...]
    Type of Medium: Dissertations
    Pages: 122 Seiten , Illustrationen, Diagramme
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI G6-18-91956
    Description / Table of Contents: Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1–500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales.
    Type of Medium: Dissertations
    Pages: xxi, 197 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Contents: 1 General introduction. - 1.1 Challenges of isotope-based temperature reconstructions. - 1.2 Thesis overview. - 1.3 Author contributions. - 2 Theoretical background. - 2.1 The isotopic composition of firn and ice. - 2.1.1 Fractionation of water isotopologues. - 2.1.2 Relationship with temperature. - 2.1.3 Measuring of the isotopic composition. - 2.2 Processes within the firn column. - 2.2.1 The firn column of polar ice sheets. - 2.2.2 The density of firn. - 2.2.3 The temperature profile of firn. - 2.2.4 Vapour diffusion in firn. - 2.3 Internal climate variability. - 3 Regional climate signal vs.local noise: a two-dimensional view of water isotopes. - 3.1 Introduction. - 3.2 Data and methods. - 3.3 Results. - 3.3.1 Trench isotope records. - 3.3.2 Single-profile representativity. - 3.3.3 Mean trench profiles. - 3.3.4 Spatial correlation structure. - 3.3.5 Statistical noise model. - 3.4 Discussion. - 3.4.1 Local noise vs. regional climate signal. - 3.4.2 Representativity of isotope signals. - 3.4.3 Implications. - 3.5 Conclusions. - 3.6 Appendix A: Derivation of noise model. - 3.6.1 Definitions. - 3.6.2 Derivation of model correlations. - 3.6.3 Estimation of parameters. - 3.7 Appendix B: Noise level after diffusion. - 4 Constraints on post-depositional isotope modifications in east antarctic firn. - 4.1 Introduction. - 4.2 Data and methods. - 4.2.1 Sampling and measurements. - 4.2.2 Trench depth scale. - 4.2.3 Spatial variability of trench profiles. - 4.2.4 Quantification of downward advection, densification and diffusion. - 4.2.5 Statistical tests. - 4.3 Results. - 4.3.1 Comparison of T15 and T13 isotope data. - 4.3.2 Expected isotope profile changes. - 4.3.3 Temporal vs. spatial variability. - 4.4 Discussion. - 4.4.1 Densification, diffusion and stratigraphic noise. - 4.4.2 Additional post-depositional modifications. - 4.5 Conclusions. - 5 On the similarity and apparent cycles of isotope variations. - 5.1 Introduction. - 5.2 Data and Methods. - 5.2.1 Data. - 5.2.2 Spectral analysis. - 5.2.3 Rice’s formula. - 5.2.4 Cycle length and amplitude estimation. - 5.2.5 Model for vertical isotope profiles. - 5.3 Results. - 5.3.1 Spectral analysis of isotope profiles. - 5.3.2 Theoretical and observed cycle length. - 5.3.3 Illustrative examples. - 5.3.4 Depth dependency of cycle length. - 5.3.5 Simulated vs. observed isotope variations. - 5.4 Discussion and summary. - 5.5 Conclusions. - 5.6 Appendix A: Input sensitivity. - 5.7 Appendix B: Additional results. - 5.8 Appendix C: Spectral significance testing. - 6 Timescale-dependency of antarctic isotope variations. - 6.1 Introduction. - 6.2 Data and methods. - 6.2.1 DML and WAIS isotope records. - 6.2.2 Spectral model. - 6.2.3 Timescale-dependent signal-to-noise ratio. - 6.2.4 Effects of diffusion and time uncertainty. - 6.2.5 Present-day temperature decorrelation. - 6.3 Results. - 6.3.1 Illustration of model approach. - 6.3.2 DML and WAIS isotope variability. - 6.4 Discussion. - 6.4.1 Interpretation of noise spectra. - 6.4.2 Interpretation of signal spectra. - 6.4.3 Signal-to-noise ratios. - 6.4.4 Differences between DML and WAIS. - 6.5 Conclusions. - 7 Declining temperature variability from LGM to holocene. - 8 General discussion and conclusions. - 8.1 Short-scale spatial and temporal isotope variability. - 8.1.1 Local spatial variability. - 8.1.2 Seasonal to interannual variability. - 8.1.3 Spatial vs. temporal variability. - 8.2 Extension to longer scales. - 8.2.1 Spatial vs. temporal variability on interannual timescales. - 8.2.2 Holocene and longer timescales. - 8.3 Concluding remarks and outlook. - Bibliography. - A Methods to: declining temperature variability from lgm to holocene. - A.1 Temperature proxy data. - A.2 Model-based temperature and variability change. - A.3 Temperature recalibration of proxy records. - A.3.1 Recalibration of ice-core records. - A.3.2 Recalibration of marine records. - A.4 Variance and variance ratio estimation. - A.5 Noise correction. - A.5.1 Testing effect of noise correction. - A.6 Effect of ecological adaption and bioturbation. - A.7 Effect of proxy sampling locations. - B Layering of surface snow and firn: noise or seasonal signal?. - B.1 Introduction. - B.2 Materials and methods. - B.2.1 Firn-core density profiles. - B.2.2 Trench density profiles. - B.2.3 Dielectric profiling and density estimates. - B.2.4 Comparison of DEP and CT density. - B.2.5 Ion measurements. - B.3 Results. - B.3.1 2-D trench density data. - B.3.2 Spatial correlation structure. - B.3.3 Comparison of mean density, isotope and impurity profiles. - B.3.4 Spectral analysis of vertical density data. - B.4 Discussion. - B.4.1 Spatial variability. - B.4.2 Representativeness of single profiles. - B.4.3 Seasonal cycle in snow density. - B.4.4 Density layering in firn and impurities. - B.5 Conclusions. - Acknowledgements - Danksagung.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: PIK A 130-19-92669
    In: Sachbericht
    Type of Medium: Monograph available for loan
    Pages: 102 Seiten , Illustrationen, Diagramme, Karten
    Series Statement: Sachbericht
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: PIK N 456-19-92699
    Type of Medium: Dissertations
    Pages: 1 Band (verschiedene Seitenzählungen) , Illustrationen, Diagramme, Karten
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: PIK N 456-19-92698
    Description / Table of Contents: In the last decades the frequency and intensity of extreme weather events like heat waves and heavy rainfall have increased and are at least partly linked to global warming. These events can have a strong impact on agricultural and economic production and, thereby, on society. Thus, it is important to improve our understanding of the physical processes leading to those extreme events in order to provide accurate near-term and long-term forecasts. Thermodynamic drivers associated with global warming are well understood, but dynamical aspects of the atmosphere much less so. The dynamical aspects, while less important than the thermodynamic drivers in regards to large-scale and long-time averaged effects, play a critical role in the formation of extremes. The overall aim of this thesis is to improve our understanding of patterns, variability and trends in the global atmospheric circulation under a changing climate. In particular, in this dissertation I developed two new data-driven methods to quantitatively describe the dynamics of…
    Type of Medium: Dissertations
    Pages: xii, 166 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: M 20.93504
    Description / Table of Contents: The concept of hydrologic connectivity summarizes all flow processes that link separate regions of a landscape. As such, it is a central theme in the field of catchment hydrology, with influence on neighboring disciplines such as ecology and geomorphology. It is widely acknowledged to be an important key in understanding the response behavior of a catchment and has at the same time inspired research on internal processes over a broad range of scales. From this process-hydrological point of view, hydrological connectivity is the conceptual framework to link local observations across space and scales. This is the context in which the four studies this thesis comprises of were conducted. The focus was on structures and their spatial organization as important control on preferential subsurface flow. Each experiment covered a part of the conceptualized flow path from hillslopes to the stream: soil profile, hillslope, riparian zone, and stream. For each study site, the most characteristic structures of the investigated domain and scale, such as slope deposits and peat layers were identified based on preliminary or previous investigations or literature reviews. Additionally, further structural data was collected and topographical analyses were carried out. [...]
    Type of Medium: Dissertations
    Pages: xix, 223 Seiten , Illustrationen, Diagramme
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: M 20.93507
    Type of Medium: Dissertations
    Pages: v, 153 Seiten , Illustrationen, Diagramme
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...