ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (2)
  • MDPI  (1)
  • Wiley  (1)
  • Nature Publishing Group
  • Periodicals Archive Online (PAO)
  • 2015-2019  (2)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with a different kind of observation system. Stromboli seismic recordings are acquired by means of a single Ocean Bottom Seismometer (OBS). From these data, it was possible to identify two different magma chambers at different depths. At Marsili Seamount, gravimetric and seismic signals are recorded by a battery-powered multi-disciplinary observatory (GEOSTAR). Gravimetric variations and seismic Short Duration Events (SDE) confirm the presence of hydrothermal activity. At the Etna observation site, seismic signals, water pressure, magnetic field and acoustic echo intensity are acquired in real-time thanks to a cabled multi-disciplinary observatory (NEMO-SN1 ). This observatory is one of the operative nodes of the European Multidisciplinary Seafloor and water-column Observatory (EMSO; www.emso-eu.org) research infrastructure. Through a multidisciplinary approach, we speculate about deep Etna sources and follow some significant events, such as volcanic ash diffusion in the seawater.
    Description: Published
    Description: 298
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: restricted
    Keywords: EMSO ; volcanic ash clouds ; seafloor observatories ; stand-alone monitoring systems ; volcano seismology ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Different procedures were used to analyze a comprehensive time series of nighttime thermal infrared images acquired from October 2006 to June 2013 by a permanent station at Pisciarelli (Campi Flegrei, Italy). The methodologies were aimed at the detection and quantification of possible spatiotemporal changes in the ground-surface thermal features of an area affected by diffuse degassing. Long-term infrared time series images were processed without taking into account atmospheric conditions and emissivity estimations. The data obtained were compared with the trends of independent geophysical and geochemical parameters, which suggested that long-term temporal variations of the surface maximum temperatures were governed by the dynamics of the deeper hydrothermal system. Analogously, the dynamics of the shallow hydrothermal system are likely to control the short-period thermal oscillations that overlie the long-term thermal signals. The map of the yearly rates of temperature change shows temperature increases clustered in the thermal anomalous area of the infrared images, without evidence of modifications to the extension of the anomaly or of growth of new areas with significant thermal emission. This suggests that in the present state, the heat transfer is mainly due to hot gas emission through preexisting fractures and vents. Our data indicate that the comprehensive picture of the spatiotemporal evolution of the thermal features of the hydrothermal sites obtained by long-term infrared monitoring can provide useful information toward refining physical and conceptual models, as well as improving surveillance of active volcanoes.
    Description: The TIR monitoring system was partially funded by the 2000–2006 National Operating Programme and by the Italian Civil Protection Department in the framework of the 2004–2006 agreement with the Istituto Nazionale di Geofisica e Vulcanologia.
    Description: Published
    Description: 812–826
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Thermal Infrared Monitoring ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...