ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8619–8626, doi:10.1002/2014GL062107.
    Description: We describe the recent occurrence of a region of diminished sea ice cover or “notch” offshore of the Kangerdlugssuaq Fiord, the site of the largest tidewater glacier along Greenland's southeast coast. The notch's location is consistent with a topographically forced flux of warm water toward the fiord, and the decrease of the sea ice cover is shown to be associated with a regional warming of the upper ocean that began in the mid-1990s. Sea ice in the vicinity of the notch also exhibits interannual variability that is shown to be associated with a seesaw in surface temperature and sea ice between southeast and northeast Greenland that is not describable solely in terms of the North Atlantic Oscillation. We therefore argue that other modes of atmospheric variability, including the Lofoten Low, are required to fully document the changes to the climate that are occurring along Greenland's east coast.
    Description: G.W.K.M. was supported by the Natural Sciences and Engineering Research Council of Canada. F.S. and M.O. were supported by NSF OCE 1130008 and NASA NNX13AK88G.
    Description: 2015-06-02
    Keywords: Greenland ; Sea ice ; Interannual variability ; Lofoten Low ; Icelandic Low
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 3542-3566, doi:10.1002/2014JC010620.
    Description: We present the results of a 6 week time series of carbonate system and stable isotope measurements investigating the effects of sea ice on air-sea CO2 exchange during the early melt period in the Canadian Arctic Archipelago. Our observations revealed significant changes in sea ice and sackhole brine carbonate system parameters that were associated with increasing temperatures and the buildup of chlorophyll a in bottom ice. The warming sea-ice column could be separated into distinct geochemical zones where biotic and abiotic processes exerted different influences on inorganic carbon and pCO2 distributions. In the bottom ice, biological carbon uptake maintained undersaturated pCO2 conditions throughout the time series, while pCO2 was supersaturated in the upper ice. Low CO2 permeability of the sea ice matrix and snow cover effectively impeded CO2 efflux to the atmosphere, despite a strong pCO2 gradient. Throughout the middle of the ice column, brine pCO2 decreased significantly with time and was tightly controlled by solubility, as sea ice temperature and in situ melt dilution increased. Once the influence of melt dilution was accounted for, both CaCO3 dissolution and seawater mixing were found to contribute alkalinity and dissolved inorganic carbon to brines, with the CaCO3 contribution driving brine pCO2 to values lower than predicted from melt-water dilution alone. This field study reveals a dynamic carbon system within the rapidly warming sea ice, prior to snow melt. We suggest that the early spring period drives the ice column toward pCO2 undersaturation, contributing to a weak atmospheric CO2 sink as the melt period advances.
    Description: We acknowledge support from the Polar Continental Shelf Program (PCSP) of Natural Resources Canada, the Natural Sciences and Engineering Research Council of Canada, the Northern Scientific Training Program, Canada Economic Development, and Fisheries and Oceans Canada.
    Description: 2015-11-19
    Keywords: Sea ice ; Carbon cycling ; CO2 ; Brines ; Stable isotopes ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7639–7647, doi:10.1002/2015GL065043.
    Description: Oceanic internal waves are closely linked to turbulence. Here a relationship between vertical wave number (kz) spectra of fine-scale vertical kinetic energy (VKE) and turbulent dissipation ε is presented using more than 250 joint profiles from five diverse dynamic regimes, spanning latitudes between the equator and 60°. In the majority of the spectra VKE varies as inline image. Scaling VKE with inline image collapses the off-equatorial spectra to within inline image but underestimates the equatorial spectrum. The simple empirical relationship between VKE and ε fits the data better than a common shear-and-strain fine-scale parameterization, which significantly underestimates ε in the two data sets that are least consistent with the Garrett-Munk (GM) model. The new relationship between fine-scale VKE and dissipation rate can be interpreted as an alternative, single-parameter scaling for turbulent dissipation in terms of fine-scale internal wave vertical velocity that requires no reference to the GM model spectrum.
    Description: National Science Foundation Grant Numbers: OCE-0728766, OCE-0425361, OCE-0424953, OCE-1029722, OCE-0622630, OCE-1030309, OCE-1232962, and Office of Naval Research Grant Number: N00014-10-10315
    Keywords: Internal waves ; Turbulence ; Mixing ; Vertical kinetic energy ; Finestructure parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Biogeosciences 122 (2017): 1529–1548, doi:10.1002/2016JG003668.
    Description: During the Norwegian young sea ICE expedition (N-ICE2015) from January to June 2015 the pack ice in the Arctic Ocean north of Svalbard was studied during four drifts between 83° and 80°N. This pack ice consisted of a mix of second year, first year, and young ice. The physical properties and ice algal community composition was investigated in the three different ice types during the winter-spring-summer transition. Our results indicate that algae remaining in sea ice that survived the summer melt season are subsequently trapped in the upper layers of the ice column during winter and may function as an algal seed repository. Once the connectivity in the entire ice column is established, as a result of temperature-driven increase in ice porosity during spring, algae in the upper parts of the ice are able to migrate toward the bottom and initiate the ice algal spring bloom. Furthermore, this algal repository might seed the bloom in younger ice formed in adjacent leads. This mechanism was studied in detail for the dominant ice diatom Nitzschia frigida. The proposed seeding mechanism may be compromised due to the disappearance of older ice in the anticipated regime shift toward a seasonally ice-free Arctic Ocean.
    Description: Norwegian Research Council Grant Number: 244646; Norwegian Ministry of Climate and Environment Grant Number: N-ICE; Norwegian Research Council Grant Number: 221961; Norwegian Ministry of Foreign Affairs Grant Number: ID Arctic; Norwegian Ministry of Foreign Affairs and Ministry of Climate and Environment, Norway; Polish-Norwegian Research Program Grant Number: Pol-Nor/197511/40/2013; Research Council of Norway project STASIS Grant Number: 221961; Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Canada Foundation for Innovation Investment in Science Fund; Research Council of Norway project Boom or Bust Grant Number: 244646; Centre of Ice, Climate and Ecosystems
    Keywords: Ice algae ; Arctic ; Sea ice ; N-ICE ; Multiyear ice ; Seeding
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 5571-5586, doi:10.1029/2018JC014096.
    Description: The Arctic ice cover influences the generation, propagation, and dissipation of internal waves, which in turn may affect vertical mixing in the ocean interior. The Arctic internal wavefield and its relationship to the ice cover is investigated using observations from Ice‐Tethered Profilers with Velocity and Seaglider sampling during the 2014 Marginal Ice Zone experiment in the Canada Basin. Ice roughness, ice concentration, and wind forcing all influenced the daily to seasonal changes in the internal wavefield. Three different ice concentration thresholds appeared to determine the evolution of internal wave spectral energy levels: (1) the initial decrease from 100% ice concentration after which dissipation during the surface reflection was inferred to increase, (2) the transition to 70–80% ice concentration when the local generation of internal waves increased, and (3) the transition to open water that was associated with larger‐amplitude internal waves. Ice roughness influenced internal wave properties for ice concentrations greater than approximately 70–80%: smoother ice was associated with reduced local internal wave generation. Richardson numbers were rarely supercritical, consistent with weak vertical mixing under all ice concentrations. On decadal timescales, smoother ice may counteract the effects of lower ice concentration on the internal wavefield complicating future predictions of internal wave activity and vertical mixing.
    Description: Seagliders Grant Number: N00014‐12‐10180; Deployment and subsequent analysis efforts of the ITP‐Vs Grant Numbers: N00014‐12‐10799, N00014‐12‐10140; Joint Ocean Ice Studies cruise; Beaufort Gyre Observing System
    Description: 2019-02-14
    Keywords: Internal waves ; Arctic ; Near‐inertial ; Ice roughness ; Ice concentration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 3450–3457, doi:10.1002/2015GL063216.
    Description: The impact of a mesoscale eddy on the magnitude and spatial distribution of diapycnal ocean mixing is investigated using a set of hydrographic and microstructure measurements collected in the Southern Ocean. These data sampled a baroclinic, middepth eddy formed during the disintegration of a deep boundary current. Turbulent dissipation is suppressed within the eddy but is elevated by up to an order of magnitude along the upper and lower eddy boundaries. A ray tracing approximation is employed as a heuristic device to elucidate how the internal wave field evolves in the ambient velocity and stratification conditions accompanying the eddy. These calculations are consistent with the observations, suggesting reflection of internal wave energy from the eddy center and enhanced breaking through critical layer processes along the eddy boundaries. These results have important implications for understanding where and how internal wave energy is dissipated in the presence of energetic deep geostrophic flows.
    Description: Natural Environment Research Council (NERC). Grant Numbers: NE/E007058/1, NE/E005667/1; U.S. National Science Foundation. Grant Numbers: OCE-1231803, OCE-0927583, OCE-1030309; NERC
    Description: 2015-11-07
    Keywords: Mixing ; Eddy ; Turbulent dissipation ; Internal waves ; Southern Ocean ; Ray tracing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 7997–8019, doi:10.1002/2015JC010892.
    Description: This paper examines two internal lee wave closures that have been used together with ocean models to predict the time-averaged global energy conversion rate into lee waves and dissipation rate associated with lee waves and topographic blocking: the Garner (2005) scheme and the Bell (1975) theory. The closure predictions in two Southern Ocean regions where geostrophic flows dominate over tides are examined and compared to microstructure profiler observations of the turbulent kinetic energy dissipation rate, where the latter are assumed to reflect the dissipation associated with topographic blocking and generated lee wave energy. It is shown that when applied to these Southern Ocean regions, the two closures differ most in their treatment of topographic blocking. For several reasons, pointwise validation of the closures is not possible using existing observations, but horizontally averaged comparisons between closure predictions and observations are made. When anisotropy of the underlying topography is accounted for, the two horizontally averaged closure predictions near the seafloor are approximately equal. The dissipation associated with topographic blocking is predicted by the Garner (2005) scheme to account for the majority of the depth-integrated dissipation over the bottom 1000 m of the water column, where the horizontally averaged predictions lie well within the spatial variability of the horizontally averaged observations. Simplifications made by the Garner (2005) scheme that are inappropriate for the oceanic context, together with imperfect observational information, can partially account for the prediction-observation disagreement, particularly in the upper water column.
    Description: National Science Foundation Grant Number: OCE-0960820; Office of Naval Research (ONR) Grant Number: N00014-11-1-0487; Australian Research Council Grant Number: (DE120102927 and CE110001028); National Science and Engineering Research Council of Canada Grant Number: (22R23085)
    Description: 2016-06-17
    Keywords: Mixing ; Dissipation ; Finestructure ; Internal waves ; Topographic interactions ; Microstructure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3696–3714, doi:10.1002/2016JC012460.
    Description: We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d−1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d−1 with mean-weighted wind speed of 6.4 m s−1. We show how ice cover changes the mixed-layer radon budget, and yields an “effective gas transfer velocity.” We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.
    Description: NSF Arctic Natural Sciences program Grant Number: 1203558
    Description: 2017-11-05
    Keywords: Radon-deficit ; Air-sea gas exchange ; Sea ice ; Gas transfer velocity ; Air-sea flux ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 831–838, doi:10.1002/2014GL062522.
    Description: Internal waves (IWs) generated in the Luzon Strait propagate into the Northern South China Sea (NSCS), enhancing biological productivity and affecting coral reefs by modulating nutrient concentrations and temperature. Here we use a state-of-the-art ocean data assimilation system to reconstruct water column stratification in the Luzon Strait as a proxy for IW activity in the NSCS and diagnose mechanisms for its variability. Interannual variability of stratification is driven by intrusions of the Kuroshio Current into the Luzon Strait and freshwater fluxes associated with the El Niño–Southern Oscillation. Warming in the upper 100 m of the ocean caused a trend of increasing IW activity since 1900, consistent with global climate model experiments that show stratification in the Luzon Strait increases in response to radiative forcing. IW activity is expected to increase in the NSCS through the 21st century, with implications for mitigating climate change impacts on coastal ecosystems.
    Description: This work was supported by NSF award 1220529 to Anne Cohen, by the Academia Sinica (Taiwan) through a thematic project grant to G.T.F.W. and Anne Cohen, by the Alfred P. Sloan Foundation and the WHOI Oceans and Climate Change Institute/Moltz Fellowship through awards to K.B.K., and by an NSF Graduate Research Fellowship to T.M.D.
    Description: 2015-08-10
    Keywords: Internal waves ; Climate change ; Coral reefs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016); 934–948, doi:10.1002/2015JC011183.
    Description: Previous observational studies have found increasing primary production (PP) in response to declining sea ice cover in the Arctic Ocean. In this study, under-ice PP was assessed based on three coupled ice-ocean-ecosystem models participating in the Forum for Arctic Modeling and Observational Synthesis (FAMOS) project. All models showed good agreement with under-ice measurements of surface chlorophyll-a concentration and vertically integrated PP rates during the main under-ice production period, from mid-May to September. Further, modeled 30-year (1980–2009) mean values and spatial patterns of sea ice concentration compared well with remote sensing data. Under-ice PP was higher in the Arctic shelf seas than in the Arctic Basin, but ratios of under-ice PP over total PP were spatially correlated with annual mean sea ice concentration, with higher ratios in higher ice concentration regions. Decreases in sea ice from 1980 to 2009 were correlated significantly with increases in total PP and decreases in the under-ice PP/total PP ratio for most of the Arctic, but nonsignificantly related to under-ice PP, especially in marginal ice zones. Total PP within the Arctic Circle increased at an annual rate of between 3.2 and 8.0 Tg C/yr from 1980 to 2009. This increase in total PP was due mainly to a PP increase in open water, including increases in both open water area and PP rate per unit area, and therefore much stronger than the changes in under-ice PP. All models suggested that, on a pan-Arctic scale, the fraction of under-ice PP declined with declining sea ice cover over the last three decades.
    Description: NASA Grant Number: NNX13AE81G; the NSF Office of Polar Programs Grant Number: (ARC-0968676, PLR-1417925, PLR-1417677 and PLR-1416920); the NASA Cryosphere Grant Number: (NNX12AB31G); Climate and Biological Response Grant Number: (NNX11AO91G)
    Description: 2016-07-27
    Keywords: Ecosystem modeling ; Sea ice ; Under-ice production ; Phenology ; Primary production ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...