ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Radiocarbon  (9)
  • Circulation/ Dynamics
  • Humans
  • Internal waves
  • John Wiley & Sons  (14)
  • 2015-2019  (14)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7639–7647, doi:10.1002/2015GL065043.
    Description: Oceanic internal waves are closely linked to turbulence. Here a relationship between vertical wave number (kz) spectra of fine-scale vertical kinetic energy (VKE) and turbulent dissipation ε is presented using more than 250 joint profiles from five diverse dynamic regimes, spanning latitudes between the equator and 60°. In the majority of the spectra VKE varies as inline image. Scaling VKE with inline image collapses the off-equatorial spectra to within inline image but underestimates the equatorial spectrum. The simple empirical relationship between VKE and ε fits the data better than a common shear-and-strain fine-scale parameterization, which significantly underestimates ε in the two data sets that are least consistent with the Garrett-Munk (GM) model. The new relationship between fine-scale VKE and dissipation rate can be interpreted as an alternative, single-parameter scaling for turbulent dissipation in terms of fine-scale internal wave vertical velocity that requires no reference to the GM model spectrum.
    Description: National Science Foundation Grant Numbers: OCE-0728766, OCE-0425361, OCE-0424953, OCE-1029722, OCE-0622630, OCE-1030309, OCE-1232962, and Office of Naval Research Grant Number: N00014-10-10315
    Keywords: Internal waves ; Turbulence ; Mixing ; Vertical kinetic energy ; Finestructure parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 5571-5586, doi:10.1029/2018JC014096.
    Description: The Arctic ice cover influences the generation, propagation, and dissipation of internal waves, which in turn may affect vertical mixing in the ocean interior. The Arctic internal wavefield and its relationship to the ice cover is investigated using observations from Ice‐Tethered Profilers with Velocity and Seaglider sampling during the 2014 Marginal Ice Zone experiment in the Canada Basin. Ice roughness, ice concentration, and wind forcing all influenced the daily to seasonal changes in the internal wavefield. Three different ice concentration thresholds appeared to determine the evolution of internal wave spectral energy levels: (1) the initial decrease from 100% ice concentration after which dissipation during the surface reflection was inferred to increase, (2) the transition to 70–80% ice concentration when the local generation of internal waves increased, and (3) the transition to open water that was associated with larger‐amplitude internal waves. Ice roughness influenced internal wave properties for ice concentrations greater than approximately 70–80%: smoother ice was associated with reduced local internal wave generation. Richardson numbers were rarely supercritical, consistent with weak vertical mixing under all ice concentrations. On decadal timescales, smoother ice may counteract the effects of lower ice concentration on the internal wavefield complicating future predictions of internal wave activity and vertical mixing.
    Description: Seagliders Grant Number: N00014‐12‐10180; Deployment and subsequent analysis efforts of the ITP‐Vs Grant Numbers: N00014‐12‐10799, N00014‐12‐10140; Joint Ocean Ice Studies cruise; Beaufort Gyre Observing System
    Description: 2019-02-14
    Keywords: Internal waves ; Arctic ; Near‐inertial ; Ice roughness ; Ice concentration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 29 (2014): 1072–1093, doi:10.1002/2014PA002674.
    Description: The last deglaciation was characterized by a series of millennial-scale climate events that have been linked to deep ocean variability. While often implied in interpretations, few direct constraints exist on circulation changes at mid-depths. Here we provide new constraints on the variability of deglacial mid-depth circulation using combined radiocarbon and neodymium isotopes in 24 North Atlantic deep-sea corals. Their aragonite skeletons have been dated by uranium-series, providing absolute ages and the resolution to record centennial-scale changes, while transects spanning the lifetime of a single coral allow subcentennial tracer reconstruction. Our results reveal that rapid fluctuations of water mass sourcing and radiocarbon affected the mid-depth water column (1.7–2.5 km) on timescales of less than 100 years during the latter half of Heinrich Stadial 1. The neodymium isotopic variability (−14.5 to −11.0) ranges from the composition of the modern northern-sourced waters towards more radiogenic compositions, suggesting the presence of a greater southern-sourced component at some times. However, in detail, simple two-component mixing between well-ventilated northern-sourced and radiocarbon-depleted southern-sourced water masses cannot explain all our data. Instead, corals from ~15.0 ka and ~15.8 ka may record variability between southern-sourced intermediate waters and radiocarbon-depleted northern-sourced waters, unless there was a major shift in the neodymium isotopic composition of the northern end-member. In order to explain the rapid shift towards the most depleted radiocarbon values at ~15.4 ka, we suggest a different mixing scenario involving either radiocarbon-depleted deep water from the Greenland-Iceland-Norwegian Seas or a southern-sourced deep water mass. Since these mid-depth changes preceded the Bolling-Allerod warming and were apparently unaccompanied by changes in the deep Atlantic, they may indicate an important role for the intermediate ocean in the early deglacial climate evolution.
    Description: This study was supported by Natural Environment Research Council grant NE/F016751/1, Marie Curie International Reintegration grant IRG 230828, and Leverhulme Trust grant RPG-398 to TvdF, as well as a Phillip Leverhulme Prize, Marie Curie International Reintegration Grant, and European Research Council grant to L.F.R.
    Description: 2015-05-20
    Keywords: Heinrich stadial ; Deglaciation ; Atlantic meridional overturning circulation ; Neodymium isotopes ; Radiocarbon ; Deep sea corals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 2407–2415, doi:10.1002/2016GL071348.
    Description: We present concentration and isotopic profiles of total, size, and polarity fractionated dissolved organic carbon (DOC) from Station ALOHA (A Long-term Oligotrophic Habitat Assessment), an oligotrophic site in the North Pacific Ocean. The data show that, between the surface and 3500 m, low molecular weight (LMW) hydrophilic DOC, LMW hydrophobic DOC, and high molecular weight (HMW) DOC constitute 22–33%, 45–52%, and 23–35% of DOC, respectively. LMW hydrophilic DOC is more isotopically depleted (δ13C of −23.9‰ to −31.5‰ and Δ14C of −304‰ to −795‰; mean age of 2850 to 15000 years) than the LMW hydrophobic DOC (δ13C of −22‰ to −23‰ and Δ14C of −270‰ to −568‰; 2470 to 6680 years) and HMW DOC (δ13C of ~−21‰ and Δ14C of −24‰ to −294‰; 135–2700 years). Our analyses suggest that a large fraction of DOC may be derived from allochthonous sources such as terrestrial and hydrothermal DOC and cycle on much longer time scales of 〉10000 years or enter the ocean as preaged carbon.
    Description: NSF Cooperative Agreement for the Operation of a National Ocean Sciences Accelerator Mass Spectrometry Facility Grant Number: OCE-0753487; Gordon and Betty Moore Foundation Grant Numbers: GBMF3298, GBMF3794; Simons Foundation Grant Number: 329108
    Description: 2017-09-07
    Keywords: Carbon cycling ; Carbon isotopes ; Radiocarbon ; Biogeochemical cycles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 4539–4553, doi:10.1002/2016JC012549.
    Description: Biogenic matter characteristics and radiocarbon contents of organic carbon (OC) were examined on sinking particle samples intercepted at three nominal depths of 1000 m, 2000 m, and 3000 m (∼50 m above the seafloor) during a 3 year sediment trap program on the New England slope in the Northwest Atlantic. We have sought to characterize the sources of sinking particles in the context of vertical export of biogenic particles from the overlying water column and lateral supply of resuspended sediment particles from adjacent margin sediments. High aluminum (Al) abundances and low OC radiocarbon contents indicated contributions from resuspended sediment which was greatest at 3000 m but also significant at shallower depths. The benthic source (i.e., laterally supplied resuspended sediment) of opal appears negligible based on the absence of a correlation with Al fluxes. In comparison, CaCO3 fluxes at 3000 m showed a positive correlation with Al fluxes. Benthic sources accounted for 42 ∼ 63% of the sinking particle flux based on radiocarbon mass balance and the relationship between Al flux and CaCO3 flux. Episodic pulses of Al at 3000 m were significantly correlated with the near-bottom current at a nearby hydrographic mooring site, implying the importance of current variability in lateral particle transport. However, Al fluxes at 1000 m and 2000 m were coherent but differed from those at 3000 m, implying more than one mode of lateral supply of particles in the water column.
    Description: NSF Ocean Sciences Chemical Oceanography program Grant Numbers: OCE-0425677, OCE-0851350; Ocean and Climate Change Institute of WHOI
    Description: 2017-12-01
    Keywords: Sinking particle flux ; Biological carbon pump ; Radiocarbon ; Lateral particle supply ; Sediment resuspension ; Northwest Atlantic ; Sediment trap
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 45 (2018): 8425-8434, doi:10.1029/2018GL078904.
    Description: Compound‐specific radiocarbon analysis was performed on different grain‐size fractions of surficial sediments to examine and compare lateral transport times (LTTs) of organic carbon. 14C aging of long‐chain leaf wax fatty acids along two dispersal pathways of fluvially derived material on adjacent continental margins implies LTTs over distances of ~30 to 500 km that range from hundreds to thousands of years. The magnitude of aging differs among grain size fractions. Our finding suggests that LTTs vary both temporally and spatially as a function of the specific properties of different continental shelf settings. Observations suggest that 14C aging is widespread during lateral transport over continental shelves, with hydrodynamic particle sorting inducing age variations among organic components residing in different grain sizes. Consideration of these phenomena is of importance for understanding carbon cycle processes and interpretation on sedimentary records on continental margins.
    Description: National Natural Science Foundation of China Grant Numbers: 41520104009, 41521064; MOE; JSPS Grant Numbers: A‐1003, 2‐1304, B‐0904, B‐0903, 22310014, 23651021, 25550020; NIES; SNSF Grant Number: 200021_140850
    Keywords: Radiocarbon ; Lateral particle transport time ; Organic carbon aging ; Continental shelf sediments ; Grain size fractions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 174–195, doi:10.1002/2014PA002649.
    Description: During the last deglaciation, the ventilation of the subarctic Pacific is hypothesized to have changed dramatically, including the rejuvenation of a poorly ventilated abyssal water mass that filled the deep ocean, and fluctuations in the strength of North Pacific intermediate and deep water formation at millennial timescales. Foraminiferal radiocarbon reconstructions of past ventilation changes in the Pacific are valuable but are hampered by poor carbonate preservation, low sediment accumulation rates, bias from bioturbation, and poorly constrained past surface reservoir age. In this study, we present paired benthic-planktonic radiocarbon measurements from the Okhotsk Sea and Emperor Seamounts. We take advantage of large contemporaneous peaks in benthic abundances from the last glacial maximum, Bolling-Allerod (BA), and early Holocene to produce time slices of radiocarbon from 1 to 4 km water depth. We explore the impact of uncertain surface reservoir age and evaluate several approaches to quantifying past ocean radiocarbon distribution using our NW Pacific data and a compilation of published data from the North Pacific. Both the calendar age and the absolute value of an ocean radiocarbon estimate depend on the assumed surface reservoir age. But for a time slice from a small geographical area with radiocarbon-independent stratigraphic correlation between cores, the shape of a water column profile is independent of surface reservoir age. The NW Pacific profiles are similar in shape to the compilation profiles for the entire North Pacific, which suggests that deglacial surface reservoir age changes across the N Pacific did not diverge dramatically across the areas sampled. The Last Glacial Maximum (LGM) profile 〉2 km spans a wide range of values, ranging from values similar to today to lower than today. However, by the BA the profile has a similar shape to today. Ultimately, local surface reservoir ages, end-member water mass composition, and mixing ratios must each be constrained before a radiocarbon activity reconstruction can be used to confidently infer ventilation changes.
    Description: Support for this project was from NSF grants 0526764, 8312240, and 9912122, and the Williams College Divisional Research Funding Committee. M.S.C. participated in the GAIN writing retreat, which was support by NSF grants 0620101 and 0620087.
    Description: 2015-09-12
    Keywords: Deglaciation ; Radiocarbon ; Pacific Ocean ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/gif
    Format: text/plain
    Format: application/postscript
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2784–2799, doi:10.1002/2014JC010643.
    Description: To better understand the current carbon cycle and potentially detect its change in the rapidly changing Arctic Ocean, we examined sinking particles collected quasi-continuously over a period of 7 years (2004–2011) by bottom-tethered sediment trap moorings in the central Canada Basin. Total mass flux was very low (〈100 mg m−2 d−1) at all sites and was temporally decoupled from the cycle of primary production in surface waters. Extremely low radiocarbon contents of particulate organic carbon and high aluminum contents in sinking particles reveal high contributions of resuspended sediment to total sinking particle flux in the deep Canada Basin. Station A (75°N, 150°W) in the southwest quadrant of the Canada Basin is most strongly influenced while Station C (77°N, 140°W) in the northeast quadrant is least influenced by lateral particle supply based on radiocarbon content and Al concentration. The results at Station A, where three sediment traps were deployed at different depths, imply that the most likely mode of lateral particle transport was as thick clouds of enhanced particle concentration extending well above the seafloor. At present, only 1%–2% of the low levels of new production in Canada Basin surface waters reaches the interior basin. Lateral POC supply therefore appears to be the major source of organic matter to the interior basin. However, ongoing changes to surface ocean boundary conditions may influence both lateral and vertical supply of particulate material to the deep Canada Basin.
    Description: This research was funded by the NSF Division of Polar Programs (ARC-0909377), the Ocean and Climate Change Institute of Woods Hole Oceanographic Institution, and ETH Zürich. J.H. and M.K. were partly supported by the National Research Foundation of Korea grant funded by the Korean Government (2011–0013629).
    Keywords: Canada Basin ; Particulate organic carbon ; Lateral supply ; Radiocarbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 3450–3457, doi:10.1002/2015GL063216.
    Description: The impact of a mesoscale eddy on the magnitude and spatial distribution of diapycnal ocean mixing is investigated using a set of hydrographic and microstructure measurements collected in the Southern Ocean. These data sampled a baroclinic, middepth eddy formed during the disintegration of a deep boundary current. Turbulent dissipation is suppressed within the eddy but is elevated by up to an order of magnitude along the upper and lower eddy boundaries. A ray tracing approximation is employed as a heuristic device to elucidate how the internal wave field evolves in the ambient velocity and stratification conditions accompanying the eddy. These calculations are consistent with the observations, suggesting reflection of internal wave energy from the eddy center and enhanced breaking through critical layer processes along the eddy boundaries. These results have important implications for understanding where and how internal wave energy is dissipated in the presence of energetic deep geostrophic flows.
    Description: Natural Environment Research Council (NERC). Grant Numbers: NE/E007058/1, NE/E005667/1; U.S. National Science Foundation. Grant Numbers: OCE-1231803, OCE-0927583, OCE-1030309; NERC
    Description: 2015-11-07
    Keywords: Mixing ; Eddy ; Turbulent dissipation ; Internal waves ; Southern Ocean ; Ray tracing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 7997–8019, doi:10.1002/2015JC010892.
    Description: This paper examines two internal lee wave closures that have been used together with ocean models to predict the time-averaged global energy conversion rate into lee waves and dissipation rate associated with lee waves and topographic blocking: the Garner (2005) scheme and the Bell (1975) theory. The closure predictions in two Southern Ocean regions where geostrophic flows dominate over tides are examined and compared to microstructure profiler observations of the turbulent kinetic energy dissipation rate, where the latter are assumed to reflect the dissipation associated with topographic blocking and generated lee wave energy. It is shown that when applied to these Southern Ocean regions, the two closures differ most in their treatment of topographic blocking. For several reasons, pointwise validation of the closures is not possible using existing observations, but horizontally averaged comparisons between closure predictions and observations are made. When anisotropy of the underlying topography is accounted for, the two horizontally averaged closure predictions near the seafloor are approximately equal. The dissipation associated with topographic blocking is predicted by the Garner (2005) scheme to account for the majority of the depth-integrated dissipation over the bottom 1000 m of the water column, where the horizontally averaged predictions lie well within the spatial variability of the horizontally averaged observations. Simplifications made by the Garner (2005) scheme that are inappropriate for the oceanic context, together with imperfect observational information, can partially account for the prediction-observation disagreement, particularly in the upper water column.
    Description: National Science Foundation Grant Number: OCE-0960820; Office of Naval Research (ONR) Grant Number: N00014-11-1-0487; Australian Research Council Grant Number: (DE120102927 and CE110001028); National Science and Engineering Research Council of Canada Grant Number: (22R23085)
    Description: 2016-06-17
    Keywords: Mixing ; Dissipation ; Finestructure ; Internal waves ; Topographic interactions ; Microstructure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...