ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (3)
  • ddc:631.4
  • Geophysical Research Abstracts  (2)
  • Nature Publishing Group  (1)
  • 2015-2019  (3)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Mt Etna in Sicily is among the most intensely monitored and studied volcanoes on Earth due to its very frequent activity, and its location in a densely populated area. Through a sophisticated monitoring system run by the Istituto Nazionale di Geofisica e Vulcanologia - Osservatorio Etneo (INGV-OE), scientists are gaining every day and in real time a picture of the state of volcanic activity of Etna. During the spring of 2007, various episodes of paroxysmal activity occurred at the South-East Crater, one of the four summit craters of Mt Etna. These episodes were always associated with a sharp increase in the amplitude of the volcanic tremor as well as changes in the spectral characteristics of this signal. Eruptive activity ranged from strong Strombolian explosions to lava fountains coupled with copious emission of lava flows and tephra. During inter-eruptive periods, recurrent seismic unrest episodes were observed in form of both temporary enhancements of the volcanic tremor amplitude as well as changes of spectral characteristics. These changes often triggered the automatic alert systems in the operation room of the INGV-OE, even though not being followed by manifest eruptive activity at the surface. The influence of man-made or meteorologically induced noise could be ruled out as a cause for the alarms. We therefore performed a multiparametric analysis of these inter-eruptive periods by integrating seismic volcanic tremor, in-soil radon, plume SO2 flux and thermal data, discussing the potential volcano-dependent source of these episodes. Short-term changes were investigated applying pattern classification, in particular Kohonen Maps and fuzzy clustering, simultaneously on volcanic tremor, radon and ambient parameters (pressure and temperature). The well established SO2 flux and thermal radiation data were used as the “smoking gun”, for certifying that the observed changes in seismic and in radon data can be considered as volcanogenic. Our results unveil ‘failed’ eruptions between February and April 2007 that are explained as ascending magma batches, which triggered repeated episodes of gas pulses and rock fracturing, but that failed to reach the surface.
    Description: Published
    Description: San Francisco, California, USA
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: Volcano monitoring, Volcanic gases, Data analysis: algorithms and implementation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.
    Description: Published
    Description: 30471
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: eruptive potential ; eruptive probability ; open conduit volcanoes ; Etna ; Soil CO2 flux ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike‐forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (〈2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.
    Description: MED-SUV project
    Description: Published
    Description: Vienna, Austria
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: Radon measurements ; seismic activity ; volcanic monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...