ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (2)
  • Maps
  • deep biosphere  (2)
  • Lausanne : Frontiers  (2)
  • Berlin ; Heidelberg : Springer
  • Cham :Springer International Publishing :
  • Ottawa : Geological Survey of Canada
  • Taylor & Francis
  • Wabern : Federal Office of Topography, Swiss Geological Survey
  • 2015-2019  (2)
Collection
  • Books  (2)
  • Maps
Source
Publisher
  • Lausanne : Frontiers  (2)
  • Berlin ; Heidelberg : Springer
  • Cham :Springer International Publishing :
  • Ottawa : Geological Survey of Canada
  • Taylor & Francis
  • +
Language
Years
  • 2015-2019  (2)
Year
Topic
  • 1
    Keywords: Geomicrobiology ; deep biosphere ; IODP ; ocean crust ; iron oxidation ; sulfate reduction ; hydrothermal vents
    Description / Table of Contents: Igneous oceanic crust is one of the largest potential habitats for life on earth, and microbial activity supported by rock-water-microbe reactions in this environment can impact global biogeochemical cycles. However, our understanding of the microbiology of this system, especially the subsurface “deep biosphere” component of it, has traditionally been limited by sample availability and quality. Over the past decade, several major international programs (such as the Center for Dark Energy Biosphere Investigations, the current International Ocean Discovery Program and its predecessor Integrated Ocean Drilling Program, and the Deep Carbon Observatory) have focused on advancing our understanding of life in this cryptic, yet globally relevant, biosphere. Additionally, many field and laboratory research programs are examining hydrothermal vent systems –a seafloor expression of seawater that has been thermally and chemically altered in subseafloor crust – and the microbial communities supported by these mineral-rich fluids. The Frontiers in Microbiology 3 September 2017 | Recent Advances in Geomicrobiology of the Ocean Crust papers in this special issue bring together recent discoveries of microbial presence, diversity and activity in these dynamic ocean environments. Cumulatively, the articles in this special issue serve as a tribute to the late Dr. Katrina J. Edwards, who was a pioneer and profound champion of studying microbes that “rust the crust”. This special issue volume serves as a foundation for the continued exploration of the subsurface ocean crust deep biosphere.
    Pages: Online-Ressource (326 Seiten)
    ISBN: 9782889452835
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: deep subsurface ; marine sediment ; deep biosphere ; ocean crust ; subseafloor sediment ; Methane ; Peru margin ; Hydrogen ; acetogenesis ; sulfate reduction ; microbiology
    Description / Table of Contents: Deep subsurface microbiology is a highly active and rapidly advancing research field at the interface of microbiology and the geosciences; it focuses on the detection, identification, quantification, cultivation and activity measurements of bacteria, archaea and eukaryotes that permeate the subsurface biosphere of deep marine sediments and the basaltic ocean and continental crust. The deep subsurface biosphere abounds with uncultured, only recently discovered and – at best - incompletely understood microbial populations. In spatial extent and volume, Earth’s subsurface biosphere is only rivaled by the deep sea water column. So far, no deep subsurface sediment has been found that is entirely devoid of microbial life; microbial cells and DNA remain detectable at sediment depths of more than 1 km; microbial life permeates deeply buried hydrocarbon reservoirs, and is also found several kilometers down in continental crust aquifers. Severe energy limitation, either as electron acceptor or donor shortage, and scarcity of microbially degradable organic carbon sources are among the evolutionary pressures that have shaped the genomic and physiological repertoire of the deep subsurface biosphere. Its biogeochemical role as long-term organic carbon repository, inorganic electron and energy source, and subduction recycling engine continues to be explored by current research at the interface of microbiology, geochemistry and biosphere/geosphere evolution. This Research Topic addresses some of the central research questions about deep subsurface microbiology and biogeochemistry: phylogenetic and physiological microbial diversity in the deep subsurface; microbial activity and survival strategies in severely energy-limited subsurface habitats; microbial activity as reflected in process rates and gene expression patterns; biogeographic isolation and connectivity in deep subsurface microbial communities; the ecological standing of subsurface biospheres in comparison to the surface biosphere – an independently flourishing biosphere, or mere survivors that tolerate burial (along with organic carbon compounds), or a combination of both? Advancing these questions on Earth’s deep subsurface biosphere redefines the habitat range, environmental tolerance, activity and diversity of microbial life.
    Pages: Online-Ressource (303 Seiten)
    ISBN: 9782889195367
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...