ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport  (2)
  • 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology  (1)
  • Società Geologica Italiana  (2)
  • Hindawi  (1)
  • Bei jing : Ren min chu ban she
  • 2015-2019  (3)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: The astronomical time scale for the Paleocene is hampered by some uncertainties including discrepant number of 405-kyr eccentricity related cycles and correlation schemes among key records being proposed by different authors (Westerhold et al., 2008; Kuiper et al., 2008; Hilgen et al., 2010). Here we present a new Danian correlation framework resolved at the ~100-kyr short-eccentricity level between the land-based Zumaia and Sopelana hemipelagic sections from the Basque Basin and deep-sea records drilled during ODP Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that reconciles both the magnetostratigraphy and the short and longeccentricity cycle patterns among the records and, hence, improves synchroneity of events. The correlation has been aided by composite images from ODP cores and a new wholerock 13C isotope record at Zumaia while its original magnetostratigraphy (Dinarès-Turell et al., 2003; 2010) is reinforced by new data from Sopelana. Notably, we challenge the correlation of the Pacific Sites 1209–1210 that were offset by as much as one 405-kyr cycle in previous interpretations (i.e., the Fasciculithus spp. LO, which approximates the Danian–Selandian (D–S) boundary, and the “Top chron C27n” climatic event were at odds between oceans in the interpretation of Hilgen et al. (2010). It is found that the Danian consists of 11 (and not 10) consecutive 405-kyr eccentricity cycles. The new consistent stratigraphic framework enables accurate estimates to be made of ages for magnetostratigraphic boundaries, bioevents, and sedimentation rates. Low sedimentation rates appear common in all records in the mid- Danian interval along the upper part of chron C28n, including conspicuous condensed intervals in some of the oceanic records that in the past have hampered the proper identification of cycles. The new chronological framework, spanning a duration of about 4.5 My, allows assessing the role of orbital forcing on the paleoclimatic variability as registered by the related isotope records. It appears clear that there exists a periodic beat at the 100-ky and 405-ky eccentricity cycles impressed in the record. The phase relationship between the benthic isotope record and eccentricity is similar to patterns documented for the Oligocene and Miocene, as indicated by others, confirming the role of orbital forcing as the pace maker for paleoclimatic variability on Milankovitch time scales. The preferred tuning to the La2011 orbital solution provides astronomically calibrated ages of 66.022±0.040 Ma and 61.607±0.040 Ma for the (D–S) and Cretaceous–Paleogene (K–Pg) boundaries respectively. Finally, we envisage that the Zumaia section, which already hosts the Selandian GSSP, could serve as the global Danian stratotype.
    Description: Published
    Description: 64-65
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: N/A or not JCR
    Description: restricted
    Keywords: cyclostratigraphy ; magnetostratigraphy ; ODP ; orbital tuning ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-11
    Description: For any scientist working in seismotectonics, the Calabrian Arc represents the most challenging area of Italy. Lying on top of a subduction zone, it is characterised by a complex geological structure largely inherited from the early stages of the collision between the Africa and Eurasia plates. The current and extremely vigorous seismogenic processes, although generated by a mechanism driven by the subduction, are no longer a direct consequence of plate convergence. About one fourth of the largest Italian earthquakes concentrates in a narrow strip of land (roughly 200x70 km) corresponding to the administrative region of Calabria. The present-day seismicity, both shallow and deep, provides little help in detecting the most insidious seismogenic structures, nor does the available record of GPS-detected strains. In addition to its fierce seismicity, the Calabrian Arc also experiences uplift at rates that are the largest in Italy, thus suggesting that active tectonic processes are faster here than elsewhere in the country. Calabrian earthquakes are strong yet inherently elusive, and even the largest of those that have occurred over the past two centuries do not appear to have caused unambiguous surface faulting. The identified active structures are not sufficient to explain in full the historical seismicity record, suggesting that some of the main seismogenic sources still lie unidentified, for instance in the offshore. As a result, the seismogenic processes of Calabria have been the object of a lively debate at least over the past three decades. In this work we propose to use the current geodynamic framework of the Calabrian Arc as a guidance to resolve the ambiguities that concern the identification of the presumed known seismogenic sources, and to identify those as yet totally unknown. Our proposed scheme is consistent with the location of the largest earthquakes, the recent evolution of the regions affected by seismogenic faulting, and the predictions of current evolutionary models of the crust overlying a W-dipping subduction zone.
    Description: Published
    Description: 365-388
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Calabrian Arc ; Calabrian earthquakes ; Seismotectonics ; Seismogenic sources ; DISS database ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Hydrothermal lakes are a very common feature in volcanic environments, and among these lake Specchio di Venere (Pantelleria island, Italy) has attracted the interest of several researchers due to its peculiar characteristics. With the aim of improving the knowledge of its mineralogy, our work pointed out the characterisation of the bottom lake sediments. We collected and analysed 5 sediments cores around the shoreline, determining the mineralogical phases, concentration of major, minor, and trace elements, and the isotopic composition of carbon and oxygen in the carbonate phases. Our findings remarked a general compositional homogeneity in both the vertical and horizontal distribution of mineral phases, with the exception of peculiar geological niches connoted by biological and hydrothermal activities.
    Description: Published
    Description: ID 8414581
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Pantelleria ; Sediments ; Geochemistry ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...