ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (3)
  • Chukchi Sea  (3)
  • Elsevier  (6)
  • Annual Reviews
  • 2015-2019  (6)
  • 1
    Publication Date: 2021-05-12
    Description: Today, satellite remote sensing has reached a key role in Earth Sciences. In particular, Synthetic ApertureRadar (SAR) sensors and SAR Interferometry (InSAR) techniques are widely used for the study of dynamicprocesses occurring inside our living planet. Over the past 3 decades, InSAR has been applied for mappingtopography and deformation at the Earth’s surface. These maps are widely used in tectonics, seismology,geomorphology, and volcanology, in order to investigate the kinematics and dynamics of crustal faulting,the causes of postseismic and interseismic displacements, the dynamics of gravity driven slope failures,and the deformation associated with subsurface movement of water, hydrocarbons or magmatic fluids.
    Description: Published
    Description: 58-82
    Description: 1T. Geodinamica e interno della Terra
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: reserved
    Keywords: SAR ; InSAR ; Earth observation ; Surface displacements ; Satellite missions ; Advanced InSAR ; Earthquake studies ; Volcanic studies ; Tectonic process ; Coseismic studies ; Soil liquefaction ; Post-seismic studies ; Interseismic studies ; Volcanic unrest ; Pre-eruptive phase ; Eruptive phase ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Key Features. Written by a global group of contributors with backgrounds ranging from philosopher to geo-practitioner, providing a balance of voices. Includes case studies, showing where experts have gone wrong and where key organizations have ignored facts, wanting assessments favorable to their agendas. Provides a much needed basis for discussion to guide scientists to consider their responsibilities and to improve communication with the public. Description. Edited by two experts in the area, Geoethics: Ethical Challenges and Case Studies in Earth Sciences addresses a range of topics surrounding the concept of ethics in geoscience, making it an important reference for any Earth scientist with a growing concern for sustainable development and social responsibility. This book will provide the reader with some obvious and some hidden information you need for understanding where experts have not served the public, what more could have been done to reach and serve the public and the ethical issues surrounding the Earth Sciences, from a global perspective. Table of contents. Section 1: Introduction Section 2: Philosophical reflections Section 3: The ethics of practice Section 4: Man made hazards Section 5: Natural hazards Section 6: Exploitation of resources Section 7: Low income and indigenous communities Section 8: Geoscience community
    Description: Published
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 4A. Clima e Oceani
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: open
    Keywords: Geoethics ; Philosophy ; Natural hazards ; Man made hazards ; Georesources ; Low income countries ; Geoscience community ; Communication ; Geoeducation ; Natural risks ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-29
    Description: The structural integrity of pipelines undergone seismic waves is crucial for industrial installation and for the distributed transportation networks of gaseous and liquid fluids. However, it is nowadays proved that the definition of seismic vulnerability based on purely, structural-derived limit states or on return-to-service or even on the purely economic repair rate indications, is not sufficient for the holistic analysis of risks. On the other hand, detailed numerical studies based on full analyses (including fluid/soil/structure interaction) are too expensive for the aims of risk assessment and simplified methodologies are still needed.In this paper, a large database of earthquake-induced damage for steel and non-steel pipelines is presented. Each case was analyzed and collected from post-earthquake reconnaissance, seismic engineering reports and technical papers. The database may be adopted for the definition of specific vulnerability function (fragility curves), which are commonly implemented in multi-hazard analyses, and more in general for the assessment of Na-Tech risks (Natural events triggering Technological disasters). Seismic damage to pipelines in the framework of Na-Tech risk assessment. Available from: https://www.researchgate.net/publication/271673585_Seismic_damage_to_pipelines_in_the_framework_of_Na-Tech_risk_assessment [accessed Jun 12, 2015].
    Description: Published
    Description: 159-162
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ; Na-Tech ; Ground failure ; Lifeline ; Fragility curve ; Pipelines ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 122-135, doi:10.1016/j.dsr2.2015.02.008.
    Description: A coupled biophysical model is used to examine the impact of changes in sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms (MUPBs) in the Chukchi Sea of the Arctic Ocean over the period 1988–2013. The model is able to reproduce the basic features of the ICESCAPE (Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment) observed MUPB during July 2011. The simulated MUPBs occur every year during 1988–2013, mainly in between mid-June and mid-July. While the simulated under-ice blooms of moderate magnitude are widespread in the Chukchi Sea, MUPBs are less so. On average, the area fraction of MUPBs in the ice-covered areas of the Chukchi Sea during June and July is about 8%, which has been increasing at a rate of 2% yr–1 over 1988–2013. The simulated increase in the area fraction as well as primary productivity and chlorophyll a biomass is linked to an increase in light availability, in response to a decrease in sea ice and snow cover, and an increase in nutrient availability in the upper 100 m of the ocean, in conjunction with an intensification of ocean circulation. Simulated MUPBs are temporally sporadic and spatially patchy because of strong spatiotemporal variations of light and nutrient availability. However, as observed during ICESCAPE, there is a high likelihood that MUPBs may form at the shelf break, where the model simulates enhanced nutrient concentration that is seldom depleted between mid-June and mid-July because of generally robust shelf-break upwelling and other dynamic ocean processes. The occurrence of MUPBs at the shelf break is more frequent in the past decade than in the earlier period because of elevated light availability there. It may be even more frequent in the future if the sea ice and snow cover continues to decline such that light is more available at the shelf break to further boost the formation of MUPBs there.
    Description: This work is supported by the NASA Cryosphere Program and Climate and Biological Response Program and the NSF Office of Polar Programs (Grant Nos. NNX12AB31G; NNX11AO91G; ARC-0901987).
    Keywords: Arctic Ocean ; Chukchi Sea ; Phytoplankton ; Blooms ; Sea ice ; Snow depth ; Light availability ; Nutrient availability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 102 (2015): 43-54, doi:10.1016/j.dsr.2015.04.004.
    Description: Over the past few decades, sea ice retreat during summer has been enhanced in the Pacific sector of the Arctic basin, likely due in part to increasing summertime heat flux of Pacific-origin water from the Bering Strait. Barrow Canyon, in the northeast Chukchi Sea, is a major conduit through which the Pacific-origin water enters the Arctic basin. This paper presents results from 6 repeat high-resolution shipboard hydrographic/velocity sections occupied across Barrow Canyon in summer 2010. The different Pacific water masses feeding the canyon – Alaskan coastal water (ACW), summer Bering Sea water (BSW), and Pacific winter water (PWW) – all displayed significant intra-seasonal variability. Net volume transports through the canyon were between 0.96 and 1.70 Sv poleward, consisting of 0.41–0.98 Sv of warm Pacific water (ACW and BSW) and 0.28–0.65 Sv of PWW. The poleward heat flux also varied strongly, ranging from 8.56 TW to 24.56 TW, mainly due to the change in temperature of the warm Pacific water. Using supplemental mooring data from the core of the warm water, along with wind data from the Pt. Barrow weather station, we derive and assess a proxy for estimating heat flux in the canyon for the summer time period, which is when most of the heat passes northward towards the basin. The average heat flux for 2010 was estimated to be 3.34 TW, which is as large as the previous record maximum in 2007. This amount of heat could melt 315,000 km2 of 1-meter thick ice, which likely contributed to significant summer sea ice retreat in the Pacific sector of the Arctic Ocean.
    Description: MI, TK, YF, KO and DS were supported by Green Network of Excellence Program (GRENE Program), Arctic Climate Change Research Project ‘Rapid Change of the Arctic Climate System and its Global Influences’ by Ministry of Education, Culture, Sports, Science and Technology Japan. RP was supported by grant ARC-1203906 from the US National Science Foundation. CA was supported by grant ARC-1023331 from the US National Science Foundation and by the Cooperative Institute for the North Atlantic Region (NOAA Cooperative AgreementNA09OAR4320129) with funds provided by the US National Oceanographic and Atmospheric Administration through an Interagency Agreement between the US Bureau of Ocean and Energy Management and the National Marine Mammal Laboratory. SV was supported by the Department of Fisheries and Oceans Canada. MI and TK were supported by the Japan Agency for Marine-Earth Science and Technology. MI, TK, YF and KO were supported by Grant no. 2014-23 from Joint Research Program of the Institute of Low Temperature Science, Hokkaido University. YF and KO were supported by grants-in-aid 20221001 for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. JTM was supported by grant PLR-1041102 from the US National Science Foundation.
    Keywords: Polar oceanography ; Arctic Ocean ; Chukchi Sea ; Heat fluxes ; Volume transports ; Water properties
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 152 (2018): 67-81, doi:10.1016/j.dsr2.2018.05.020.
    Description: Ocean acidification (OA), driven by rising anthropogenic carbon dioxide (CO2), is rapidly advancing in the Pacific Arctic Region (PAR), producing conditions newly corrosive to biologically important carbonate minerals like aragonite. Naturally short linkages across the PAR food web mean that species-specific acidification stress can be rapidly transmitted across multiple trophic levels, resulting in widespread impacts. Therefore, it is critical to understand the formation, transport, and persistence of acidified conditions in the PAR in order to better understand and project potential impacts to this delicately balanced ecosystem. Here, we synthesize data from process studies across the PAR to show the formation of corrosive conditions in colder, denser winter-modified Pacific waters over shallow shelves, resulting from the combination of seasonal terrestrial and marine organic matter respiration with anthropogenic CO2. When these waters are subsequently transported off the shelf, they acidify the Pacific halocline. We estimate that Barrow Canyon outflow delivers ~2.24 Tg C yr-1 to the Arctic Ocean through corrosive winter water transport. This synthesis also allows the combination of spatial data with temporal data to show the persistence of these conditions in halocline waters. For example, one study in this synthesis indicated that 0.5–1.7 Tg C yr-1 may be returned to the atmosphere via air-sea gas exchange of CO2 during upwelling events along the Beaufort Sea shelf that bring Pacific halocline waters to the ocean surface. The loss of CO2 during these events is more than sufficient to eliminate corrosive conditions in the upwelled Pacific halocline waters. However, corresponding moored and discrete data records indicate that potentially corrosive Pacific waters are present in the Beaufort shelfbreak jet during 80% of the year, indicating that the persistence of acidified waters in the Pacific halocline far outweighs any seasonal mitigation from upwelling. Across the datasets in this large-scale synthesis, we estimate that the persistent corrosivity of the Pacific halocline is a recent phenomenon that appeared between 1975 and 1985. Over that short time, these potentially corrosive waters originating over the continental shelves have been observed as far as the entrances to Amundsen Gulf and M’Clure Strait in the Canadian Arctic Archipelago. The formation and transport of corrosive waters on the Pacific Arctic shelves may have widespread impact on the Arctic biogeochemical system and food web reaching all the way to the North Atlantic.
    Description: National Science Foundation Grant PLR-1303617.
    Keywords: Ocean acidification ; Pacific Arctic ; Arctic Ocean ; East Siberian Sea ; Chukchi Sea ; Beaufort Sea ; Transport ; Arctic Rivers ; Sea Ice ; Respiration ; Upwelling ; Biological vulnerability ; Community resilience
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...