ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (994)
  • Hindawi  (994)
  • American Physical Society (APS)
  • 2015-2019  (994)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (994)
Collection
  • Journals
  • Articles  (994)
Years
Year
Journal
  • 1
    Publication Date: 2015-06-05
    Description: The aim of this paper is the assessment of the capability of controllers based on the combined actuation of flaps and variable-stiffness devices to alleviate helicopter main rotor vibratory hub loads. Trailing-edge flaps are positioned at the rotor blade tip region, whereas variable-stiffness devices are located at the pitch link and at the blade root. Control laws are derived by an optimal control procedure based on the best trade-off between control effectiveness and control effort, under the constraint of satisfaction of the equations governing rotor blade aeroelastic response. The numerical investigation concerns the analysis of performance and robustness of the control techniques developed, through application to a four-bladed helicopter rotor in level flight. The identification of the most efficient control configuration is also attempted.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-12
    Description: A guidance and control strategy for a class of 2D trajectory correction fuze with fixed canards is developed in this paper. Firstly, correction control mechanism is researched through studying the deviation motion, the key point of which is the dynamic equilibrium angle. Phase lag of swerve response is the dominating factor for correction control, and formula is deduced with the Mach number as argument. Secondly, impact point deviation prediction based on perturbation theory is proposed, and the numerical solution and application method are introduced. Finally, guidance and control strategy is developed, and simulations to validate the strategy are conducted.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-18
    Description: The effect of air throttling on flame stabilization of an ethylene fueled scramjet combustor was investigated by numerical simulation and experiments in this paper. The results were obtained under the inflow condition with Mach number of 2.0, total temperature of 900 K, total pressure of 0.8 MPa, and total equivalence ratio of 0.5. The shock train generated by air throttling had a big effect on the flow structure of the scramjet combustor. Compared with the combustor without air throttling, the flow field with air throttling had a lower velocity and higher pressure, temperature, and vortices intensity. Air throttling was an effective way to achieve flame stabilization; the combustion in the combustor without air throttling was nearly blowout. In the experiment, the combustion was nearly blowout with air throttling location of 745 mm, and the fuel/air mixture in the combustor with air throttling location of 875 mm was burned intensively. It was important to choose the location and time sequence of air throttling for fuel ignition and flame stabilization. The numerical simulation results agreed well with experimental measurements.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-24
    Description: This study investigates the maximum gliding range problems of subsonic unpowered gliding vehicles and proposes an approximate optimal maximum range guidance scheme. First, the gliding flight path angle corresponding to constant dynamic pressure is derived. A lift-to-drag ratio inversely proportional to the dynamic pressure is then proven. On this basis, the calculation method of an optimal dynamic pressure (ODP) profile with a maximum throughout the flight is presented. A guidance scheme for tracking the ODP profile, which uses the flight path angle as control variable, is then designed. The maximum ranges of the unpowered gliding vehicle obtained by the proposed guidance scheme and pseudospectral method are compared. Results show that the guidance scheme provides an accurate approximation of the optimal results, and the errors are less than 2%. The proposed guidance scheme is easy to implement and is not influenced by wind compared with numerical schemes.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-01
    Description: Triangular grid reinforced by carbon fiber/epoxy (CF/EP) was designed and manufactured. The sandwich structure was prepared by gluing the core and composite skins. The mechanical properties of the sandwich structure were investigated by the finite element analysis (FEA) and three-point bending methods. The calculated bending stiffness and core shear stress were compared to the characteristics of a honeycomb sandwich structure. The results indicated that the triangular core ultimately failed under a bending load of 11000 N; the principal stress concentration was located at the loading region; and the cracks occurred on the interface top skin and triangular core. In addition, the ultimate stress bearing of the sandwich structure was 8828 N. The experimental results showed that the carbon fiber reinforced triangular grid was much stiffer and stronger than the honeycomb structure.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-22
    Description: This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV) as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-26
    Description: An Unmanned Aerial Vehicle (UAV) system and its aerial image analysis method are developed to evaluate the damage degree of earthquake area. Both the single-rotor and the six-rotor UAVs are used to capture the visible light image of ground targets. Five types of typical ground targets are considered for the damage degree evaluation: the building, the road, the mountain, the riverway, and the vegetation. When implementing the image analysis, first the Image Quality Evaluation Metrics (IQEMs), that is, the image contrast, the image blur, and the image noise, are used to assess the imaging definition. Second, once the image quality is qualified, the Gray Level Cooccurrence Matrix (GLCM) texture feature, the Tamura texture feature, and the Gabor wavelet texture feature are computed. Third, the Support Vector Machine (SVM) classifier is employed to evaluate the damage degree. Finally, a new damage degree evaluation (DDE) index is defined to assess the damage intensity of earthquake. Many experiment results have verified the correctness of proposed system and method.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-26
    Description: A smooth guidance law for intercepting a maneuvering target with impact angle constraints is documented based on the nonsingular fast terminal sliding mode control scheme and adaptive control scheme. Different from the traditional adaptive law which is used to estimate the unknown upper bound of the target acceleration, a new adaptive law is proposed to estimate the square of target acceleration bound, which avoids the use of the nonsmooth signum function and therefore ensures the smoothness of the guidance law. The finite time convergence of the guidance system is guaranteed based on the Lyapunov method and the finite time theory. Simulation results indicate that under the proposed guidance law the missile can intercept the target with a better accuracy at a desired impact angle in a shorter time with a completely smooth guidance command compared with the existing adaptive fast terminal sliding mode guidance laws, which shows the superiority of this method.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-29
    Description: Atomic clock is the core component of navigation satellite payload, playing a decisive role in the realization of positioning function. So the monitoring for anomalies of the satellite atomic clock is very important. In this paper, a complete autonomous monitoring method for the satellite clock is put forward, which is, respectively, based on Phase-Locked Loop (PLL) and statistical principle. Our methods focus on anomalies in satellite clock such as phase and frequency jumping, instantaneous deterioration, stability deterioration, and frequency drift-rate anomaly. Now, method based on PLL has been used successfully in China’s newest BeiDou navigation satellite.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-01
    Description: The paper deals with the multiple gravity assist trajectories design. In order to improve the performance of the heuristic algorithms, such as differential evolution algorithm, in multiple gravity assist trajectories design optimization, a method combining BFS (breadth-first search) and EP_DE (differential evolution algorithm based on search space exploring and principal component analysis) is proposed. In this method, firstly find the possible multiple gravity assist planet sequences with pruning based BFS and use standard differential evolution algorithm to judge the possibility of all the possible trajectories. Then select the better ones from all the possible solutions. Finally, use EP_DE which will be introduced in this paper to find an optimal decision vector of spacecraft transfer time schedule (launch window and transfer duration) for each selected planet sequence. In this paper, several cases are presented to prove the efficiency of the method proposed.
    Print ISSN: 1687-5966
    Electronic ISSN: 1687-5974
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...