ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (32)
  • American Chemical Society
  • American Chemical Society (ACS)
  • Institute of Physics
  • PANGAEA
  • 2015-2019  (32)
Collection
Years
Year
  • 1
    Publication Date: 2017-11-20
    Description: Marine methane hydrate in sands has huge potential as an unconventional gas resource; however, no field test of their production potential had been conducted. Here, we report the world’s first offshore methane hydrate production test conducted at the eastern Nankai Trough and show key findings toward future commercial production. Geological analysis indicates that hydrate saturation reaches 80% and permeability in the presence of hydrate ranges from 0.01 to 10 mdarcies. Permeable (1–10 mdarcies) highly hydrate-saturated layers enable depressurization-induced gas production of approximately 20,000 Sm3/D with water of 200 m3/D. Numerical analysis reveals that the dissociation zone expands laterally 25 m at the front after 6 days. Gas rate is expected to increase with time, owing to the expansion of the dissociation zone. It is found that permeable highly hydrate-saturated layers increase the gas–water ratio of the production fluid. The identification of such layers is critically important to increase the energy efficiency and the technical feasibility of depressurization-induced gas production from hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-20
    Description: The guest-exchange method (or replacement) for methane production from gas hydrates has recently received attention because it can be used for both carbon dioxide sequestration and methane production. The structure of gas hydrates is maintained as a structure I (sI) hydrate while methane molecules are exchanged with carbon dioxide. In this study, CH4 + CO2 mixed gas hydrates were examined under terahertz light at various temperatures to simulate CH4–CO2 exchange reactions. Each gas hydrate composition examined was a representative composition at each step of the exchange reaction. The molecular composition was also accurately analyzed by gas chromatography. Refractive indices calculated by the terahertz time-domain spectroscopy (THz-TDS) of gas hydrate samples were correlated to the guest composition, and this novel method was proven to be used to quantify the extent of replacement via optical constant. Furthermore, changes in the water framework from the sI hydrate to ice using THz-TDS were investigated with an increasing temperature. Overall, this study reveals the process of guest exchange and phase transition from a gas hydrate to ice via the optical properties in the terahertz region, and it offers a powerful tool in gas hydrate production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-27
    Description: In the colloidal synthesis of iron sulfides, a series of dialkyl disulfides, alkyl thiols, and dialkyl disulfides (allyl, benzyl, tert-butyl, and phenyl) were employed as sulfur sources. Their reactivity was found to tune the phase between pyrite (FeS2), greigite (Fe3S4), and pyrrhotite (Fe7S8). DFT was used to show that sulfur-rich phases were favored when the C–S bond strength was low in the organosulfurs, yet temperature dependent studies and other observations indicated the reasons for phase selectivity were more nuanced; the different precursors decomposed through different reaction mechanisms, some involving the oleylamine solvent. The formation of pyrite from diallyl disulfide was carefully studied as it was the only precursor to yield FeS2. Raman spectroscopy indicated that FeS2 forms directly without an FeS intermediate, unlike most synthetic procedures to pyrite. Diallyl disulfide releases persulfide (S–S)2– due to the lower C–S bond strength relative to the S–S bond strength, as well as facile decomposition in the presence of amines through SN2′ mechanisms at elevated temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  Industrial & Engineering Chemistry Research, 56 (44). pp. 12755-12762.
    Publication Date: 2020-02-06
    Description: The discharges from industrial processes constitute the main source of copper contamination in aqueous ecosystems. In this study we investigated the capacity of different types of biochar (derived from chicken manure, eucalyptus, corncob, olive mill and pine sawdust) to remove copper from aqueous solution in a continuous-flow system. The flow rate of the system strongly influenced the amount of copper retained. The adsorption to the corncob biochar varied from 5.51 to 3.48 mg Cu g-1 as the flux decreased from 13 to 2.5 mL min-1. The physicochemical characteristics of biochar determine the copper retention capacity and the underlying immobilization mechanisms. Biochars with high inorganic contents retain the largest amounts of copper and may be suitable for using in water treatment systems to remove heavy metals. The copper retention capacity of the biochars ranged between ~1.3 and 26 mg g-1 and varied in the following order: chicken manure 〉 olive mill 〉〉 corncob 〉 eucalyptus 〉 sawdust pine.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-04-23
    Description: Implantable endovascular devices such as bare metal, drug eluting, and bioresorbable stents have transformed interventional care by providing continuous structural and mechanical support to many peripheral, neural, and coronary arteries affected by blockage. Although effective in achieving immediate restoration of blood flow, the long-term re-endothelialization and inflammation induced by mechanical stents are difficult to diagnose or treat. Here we present nanomaterial designs and integration strategies for the bioresorbable electronic stent with drug-infused functionalized nanoparticles to enable flow sensing, temperature monitoring, data storage, wireless power/data transmission, inflammation suppression, localized drug delivery, and hyperthermia therapy. In vivo and ex vivo animal experiments as well as in vitro cell studies demonstrate the previously unrecognized potential for bioresorbable electronic implants coupled with bioinert therapeutic nanoparticles in the endovascular system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Energy & Fuels, 29 (9). pp. 5681-5691.
    Publication Date: 2020-07-31
    Description: The shrinking-core model of the formation of gas hydrates from ice spheres with well-defined geometry gives experimental access to the gas permeation in bulk hydrates which is relevant to their use as energy storage materials, their exploitation from natural resources, as well as to their role in flow assurance. Here we report on a new approach to model CO2 clathration experiments in the temperature range from 230 to 272 K. We develop a comprehensive description of the gas permeation based on the diffusion along the network of polyhedral cages, some of them being empty. Following earlier molecular dynamics simulation results, the jump from a cage to one of its empty neighbors is assumed to proceed via a “hole-in-cage-wall” mechanism involving water vacancies in cage walls. The rate-limiting process in the investigated temperature range can be explained by the creation of water-vacancy-interstitial pairs. The gas diffusion leads to a time-dependent cage filling which decreases across the hydrate layer with the distance from the particle surface. The model allows a prediction of the time needed for a complete conversion of ice spheres into clathrate as well as the time needed for a full equilibration of the cage fillings. The findings essentially support our earlier results obtained in the framework of a purely phenomenological permeation model in terms of the overall transformation kinetics, yet it provides for the first time insight into the cage equilibration processes. The diffusion of CO2 molecules through bulk hydrate is found to be about three to four times faster in comparison with the CH4 case.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: This paper proposes improved guidelines for dissolved organic matter (DOM) isolation by solid phase extraction (SPE) with a styrene-divinylbenzene copolymer (PPL) sorbent, which has become an established method for the isolation of DOM from natural waters, because of its ease of application and appreciable carbon recovery. Suwannee River water was selected to systematically study the effects of critical SPE variables such as loading mass, concentration, flow rate, and up-scaling on the extraction selectivity of the PPL sorbent. High-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and proton nuclear magnetic resonance (H-1 NMR) spectroscopy were performed to interpret the DOM chemical space of eluates, as well as permeates and-wash liquids with molecular resolution. Up to 89% dissolved organic carbon (DOC) recovery was obtained with a DOC/PPL mass ratio of 1:800 at a DOC concentration of 20 mg/L. With the 0 application of larger loading volumes, low proportions of highly oxygenated compounds were retained on the PPL sorbent. The effects of the flow rate on the extraction selectivity of the sorbent were marginal. Up-scaling had a limited effect on the extraction selectivity with the exception of increased self-esterification with a methanol solvent, resulting in methyl ester groups. Furthermore, the SPE/PPL extract exhibited highly authentic characteristics in comparison with original water and reverse osmosis samples. These findings will be useful for reproducibly isolating DOM with representative molecular compositions from various sources and concentrations and minimizing potential inconsistencies among interlaboratory comparative studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  Environmental Science & Technolog, 51 (23). pp. 13733-13739.
    Publication Date: 2020-02-06
    Description: The majority of methane produced in many anoxic sediments is released via ebullition. These bubbles are subject to dissolution as they rise, and dissolution rates are strongly influenced by bubble size. Current understanding of natural methane bubble size distributions is limited by the difficulty in measuring bubble sizes over wide spatial or temporal scales. Our custom optical bubble size sensors recorded bubble sizes and release timing at 8 locations in Upper Mystic Lake, MA continuously for 3 months. Bubble size distributions were spatially heterogeneous even over relatively small areas experiencing similar flux, suggesting that localized sediment conditions are important to controlling bubble size. There was no change in bubble size distributions over the 3 month sampling period, but mean bubble size was positively correlated with daily ebullition flux. Bubble data was used to verify the performance of a widely used bubble dissolution model, and the model was then used to estimate that bubble dissolution accounts for approximately 10% of methane accumulated in the hypolimnion during summer stratification, and at most 15% of the diffusive air–water–methane flux from the epilimnion.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  Environmental Science & Technology, 49 (22). pp. 13121-13129.
    Publication Date: 2019-10-24
    Description: Laboratory sediment incubations and continuous ebullition monitoring over an annual cycle in the temperate Saar River, Germany confirm that impounded river zones can produce and emit methane at high rates (7 to 30 (g CH4 m–3 d–1) at 25 °C and 270 to 700 (g CH4 m–2 yr–1), respectively). Summer methane ebullition (ME) peaks were a factor of 4 to 10 times the winter minima, and sediment methane formation was dominated by the upper sediment (depths of 0.14 to 0.2 m). The key driver of the seasonal ME dynamics was temperature. An empirical model relating methane formation to temperature and sediment depth, derived from the laboratory incubations, reproduced the measured daily ebullition from winter to midsummer, although late summer and autumn simulated ME exceeded the observed ME. A possible explanation for this was substrate limitation. We recommend measurements of methanogenically available carbon sources to identify substrate limitation and help characterize variation in methane formation with depth and from site to site.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Accounts of chemical research, 49 (9). pp. 1946-1956.
    Publication Date: 2019-04-02
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...