ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cloning, Molecular
  • Transfection
  • American Association for the Advancement of Science (AAAS)  (1)
  • American Association of Petroleum Geologists (AAPG)
  • Emerald
  • Springer
  • Wiley-Blackwell
  • 2015-2019  (1)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (1)
  • American Association of Petroleum Geologists (AAPG)
  • Emerald
  • Springer
  • Wiley-Blackwell
  • +
Years
Year
  • 1
    Publication Date: 2015-06-27
    Description: Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764398/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764398/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Govorunova, Elena G -- Sineshchekov, Oleg A -- Janz, Roger -- Liu, Xiaoqin -- Spudich, John L -- R01 GM027750/GM/NIGMS NIH HHS/ -- R01GM027750/GM/NIGMS NIH HHS/ -- R21MH098288/MH/NIMH NIH HHS/ -- S10RR022531/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):647-50. doi: 10.1126/science.aaa7484. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA. ; Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113638" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chloride Channels/classification/genetics/*physiology ; Cryptophyta/genetics/*metabolism ; HEK293 Cells ; Humans ; Ion Channel Gating ; Light ; Membrane Potentials/physiology/*radiation effects ; Molecular Sequence Data ; Neural Inhibition ; Neurons/physiology/*radiation effects ; Optogenetics/*methods ; Photic Stimulation ; Phylogeny ; Rhodopsins, Microbial/classification/genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...