ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Salinity  (4)
  • Sea ice  (3)
  • Elsevier  (6)
  • American Association for the Advancement of Science  (1)
  • American Chemical Society
  • 2015-2019  (7)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 122-135, doi:10.1016/j.dsr2.2015.02.008.
    Description: A coupled biophysical model is used to examine the impact of changes in sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms (MUPBs) in the Chukchi Sea of the Arctic Ocean over the period 1988–2013. The model is able to reproduce the basic features of the ICESCAPE (Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment) observed MUPB during July 2011. The simulated MUPBs occur every year during 1988–2013, mainly in between mid-June and mid-July. While the simulated under-ice blooms of moderate magnitude are widespread in the Chukchi Sea, MUPBs are less so. On average, the area fraction of MUPBs in the ice-covered areas of the Chukchi Sea during June and July is about 8%, which has been increasing at a rate of 2% yr–1 over 1988–2013. The simulated increase in the area fraction as well as primary productivity and chlorophyll a biomass is linked to an increase in light availability, in response to a decrease in sea ice and snow cover, and an increase in nutrient availability in the upper 100 m of the ocean, in conjunction with an intensification of ocean circulation. Simulated MUPBs are temporally sporadic and spatially patchy because of strong spatiotemporal variations of light and nutrient availability. However, as observed during ICESCAPE, there is a high likelihood that MUPBs may form at the shelf break, where the model simulates enhanced nutrient concentration that is seldom depleted between mid-June and mid-July because of generally robust shelf-break upwelling and other dynamic ocean processes. The occurrence of MUPBs at the shelf break is more frequent in the past decade than in the earlier period because of elevated light availability there. It may be even more frequent in the future if the sea ice and snow cover continues to decline such that light is more available at the shelf break to further boost the formation of MUPBs there.
    Description: This work is supported by the NASA Cryosphere Program and Climate and Biological Response Program and the NSF Office of Polar Programs (Grant Nos. NNX12AB31G; NNX11AO91G; ARC-0901987).
    Keywords: Arctic Ocean ; Chukchi Sea ; Phytoplankton ; Blooms ; Sea ice ; Snow depth ; Light availability ; Nutrient availability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Continental Shelf Research 124 (2016): 165-181, doi:10.1016/j.csr.2016.06.005.
    Description: A new hydrographic climatology has been created for the continental shelf region, extending from the Labrador shelf to the Mid-Atlantic Bight. The 0.2-degree climatology combines all available observations of surface and bottom temperature and salinity collected between 1950 and 2010 along with the location, depth and date of these measurements. While climatological studies of surface and bottom temperature and salinity have been presented previously for various regions along the Canadian and U.S. shelves, studies also suggest that all these regions are part of one coherent system. This study focuses on the coherent structure of the mean seasonal cycle of surface and bottom temperature and salinity and its variation along the shelf and upper slope. The seasonal cycle of surface temperature is mainly driven by the surface heat flux and exhibits strong dependency on latitude (r≈−0.9). The amplitude of the seasonal cycle of bottom temperature is rather dependent on the depth, while the spatial distribution of bottom temperature is correlated with latitude. The seasonal cycle of surface salinity is influenced by several components, such as sea-ice on the northern shelves and river discharge in the Gulf of St. Lawrence. The bottom salinity exhibits no clear seasonal cycle, but its spatial distribution is highly correlated with bathymetry, thus Slope Water and its intrusion on the shelf can be identified by its relatively high salinity compared to shallow, fresher shelf water. Two different regimes can be identified, especially on the shelf, separated by the Laurentian Channel: advection influences the phasing of the seasonal cycle of surface salinity and bottom temperature to the north, while in the southern region, river runoff and air-sea heat flux forcing are dominant, especially over the shallower bathymetry.
    Description: Support from NSF OCE PO to Y-OK (OCE-1242989 and OCE-1435602) and SJL (OCE-1332666).
    Keywords: Seasonal climatology ; Temperature ; Salinity ; Dataset ; Shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Regional Studies in Marine Science 18 (2018): 1-10, doi:10.1016/j.rsma.2017.12.004.
    Description: The variations of temperature and salinity in the Sudanese coastal zone of the Red Sea are studied for the first time using measurements acquired from survey cruises during 2009–2013 and from a mooring during 2014–2015. The measurements show that temperature and salinity variability above the permanent pycnocline is dominated by seasonal signals, similar in character to seasonal temperature and salinity oscillations observed further north on the eastern side of the Red Sea. Using estimates of heat flux, circulation and horizontal temperature/salinity gradients derived from a number of sources, we determined that the observed seasonal signals of temperature and salinity are not the product of local heat and mass flux alone, but are also due to alongshore advection of waters with spatially varying temperature and salinity. As the temperature and salinity gradients, characterized by warmer and less saline water to the south, exhibit little seasonal variation, the seasonal salinity and temperature variations are closely linked to an observed seasonal oscillation in the along-shore flow, which also has a mean northward component. We find that the inclusion of the advection terms in the heat and mass balance has two principal effects on the computed temperature and salinity series. One is that the steady influx of warmer and less saline water from the south counteracts the long-term trend of declining temperatures and rising salinities computed with only the local surface flux terms, and produces a long-term steady state in temperature and salinity. The second effect is produced by the seasonal alongshore velocity oscillation and most profoundly affects the computed salinity, which shows no seasonal signal without the inclusion of the advective term. In both the observations and computed results, the seasonal salinity signal lags that of temperature by roughly 3 months.
    Description: The SPS surveys were funded by the Norwegian Norad’s Program for Master Studies and organized by IMR–RSU in Port Sudan. The central Red Sea mooring data were acquired as part of a WHOI–KAUST collaboration funded by Award Nos. USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia. The work of I. Skjelvan and A.M. Omar was partly supported by the Research Council of Norway through the MIMT Center for Research-based Innovation. This work is part of a Ph.D. project at GFI–UiB funded by the Norwegian Quota program .
    Keywords: Coastal Red Sea ; Temperature ; Salinity ; Time series ; Seasonality ; Alongshore advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cold Regions Science and Technology 109 (2015): 9-17, doi:10.1016/j.coldregions.2014.08.004.
    Description: Traditional measures for detecting oil spills in the open-ocean are both difficult to apply and less effective in ice-covered seas. In view of the increasing levels of commercial activity in the Arctic, there is a growing gap between the potential need to respond to an oil spill in Arctic ice-covered waters and the capability to do so. In particular, there is no robust operational capability to remotely locate oil spilt under or encapsulated within sea ice. To date, most research approaches the problem from on or above the sea ice, and thus they suffer from the need to ‘see’ through the ice and overlying snow. Here we present results from a large-scale tank experiment which demonstrate the detection of oil beneath sea ice, and the quantification of the oil layer thickness is achievable through the combined use of an upward-looking camera and sonar deployed in the water column below a covering of sea ice. This approach using acoustic and visible measurements from below is simple and effective, and potentially transformative with respect to the operational response to oil spills in the Arctic marine environment. These results open up a new direction of research into oil detection in ice-covered seas, as well as describing a new and important role for underwater vehicles as platforms for oil-detecting sensors under Arctic sea ice.
    Description: This work was funded through a competitive grant for the detection of oil under ice obtained from Prince William Sound Oil Spill Recovery Institute (OSRI) (11-10-09). Additional funding/resources was obtained through the EU FP7 funded ACCESS programme (Grant Agreement n°. 265863).
    Keywords: Arctic ; Oil spill ; Sea ice ; Oil detection ; Sonar ; Camera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Hydrology: Regional Studies 11 (2017): 147-165, doi:10.1016/j.ejrh.2015.12.056.
    Description: The study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef. Coastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii. Estimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn, t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.
    Description: This research was primarily funded by the USGS Coastal and Marine Geology Program (CMGP). CRG acknowledges support from the National Oceanic and Atmospheric Administration, Project R/SB-12, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA14OAR4170071 from NOAA Office of Sea Grant, Department of Commerce.
    Keywords: Regional groundwater flow ; Submarine groundwater discharge ; Radon ; Thoron ; Thermal infrared ; Oceanographic time series ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 3 (2017): e1601426, doi:10.1126/sciadv.1601426.
    Description: Southern Ocean abyssal waters, in contact with the atmosphere at their formation sites around Antarctica, not only bring signals of a changing climate with them as they move around the globe but also contribute to that change through heat uptake and sea level rise. A repeat hydrographic line in the Indian sector of the Southern Ocean, occupied three times in the last two decades (1994, 2007, and, most recently, 2016), reveals that Antarctic Bottom Water (AABW) continues to become fresher (0.004 ± 0.001 kg/g decade−1), warmer (0.06° ± 0.01°C decade−1), and less dense (0.011 ± 0.002 kg/m3 decade−1). The most recent observations in the Australian-Antarctic Basin show a particularly striking acceleration in AABW freshening between 2007 and 2016 (0.008 ± 0.001 kg/g decade−1) compared to the 0.002 ± 0.001 kg/g decade−1 seen between 1994 and 2007. Freshening is, in part, responsible for an overall shift of the mean temperature-salinity curve toward lower densities. The marked freshening may be linked to an abrupt iceberg-glacier collision and calving event that occurred in 2010 on the George V/Adélie Land Coast, the main source region of bottom waters for the Australian-Antarctic Basin. Because AABW is a key component of the global overturning circulation, the persistent decrease in bottom water density and the associated increase in steric height that result from continued warming and freshening have important consequences beyond the Southern Indian Ocean.
    Description: The 2016 I08S cruise and the analysis and science performed at sea, as well as the individual principal investigators were funded through multiple National Oceanic and Atmospheric Administration (NOAA) and NSF grants including NSF grant OCE-1437015. The research for this article was mainly completed at sea. For land-based work, V.V.M. relied on her postdoctoral funding through NSF grant OCE-1435665, and A.M.M. was supported in part by NSF grant OCE-1356630 and NOAA grant NA11OAR4310063.
    Keywords: Salinity ; AABW ; Changes ; Water masses ; T-S properties ; Iceberg ; Calving ; Antartica ; Abyss ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 105 (2016): 1-12, doi:10.1016/j.ocemod.2016.02.009
    Description: The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.
    Description: This work was supported by the Office of Naval Research, Code 322, “Arctic and Global Prediction”, directed by Drs. Martin Jeffries and Scott Harper. (Grant numbers and Principal Investigators are: Ackley, N000141310435; Babanin, N000141310278; Doble, N000141310290; Fairall, N0001413IP20046; Gemmrich, N000141310280; Girard-Ardhuin and Ardhuin, N000141612376; Graber, N000141310288; Guest, N0001413WX20830; Holt, N0001413IP20050; Lehner, N000141310303; Maksym, N000141310446; Perrie, N00014-15-1-2611; Rogers, N0001413WX20825; Shen, N000141310294; Squire, N000141310279; Stammerjohn, N000141310434; Thomson, N000141310284; Wadhams, N000141310289.)
    Keywords: Sea ice ; Arctic Ocean ; Ocean surface waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...