ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (3)
  • 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability  (2)
  • Wiley-Blackwell  (5)
  • Wiley
  • 2015-2019  (5)
Collection
Years
Year
  • 1
    Publication Date: 2021-06-22
    Description: Operative seismic aftershock risk forecasting can be particularly useful for rapid decision-making in the presence of an ongoing sequence. In such a context, limit state first-excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance-based framework for adaptive aftershock risk assessment in the immediate post-mainshock environment. A time-dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event-dependent fragility curves as a function of the first-mode spectral acceleration for a prescribed limit state is calculated by employing back-to-back non- linear dynamic analyses. An epidemic-type aftershock sequence model is employed for estimating the spatio-temporal evolution of aftershocks. The event-dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic-type aftershock sequence aftershock hazard. The daily probability of limit state first-excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the num- ber of aftershocks. As a numerical example, daily aftershock risk is calculated for the L’Aquila 2009 aftershock sequence (central Italy). A representative three-story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first-excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.
    Description: Published
    Description: 2179–2197
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: aftershock ; time-dependent reliability ; seismic risk ; etas modeling ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-18
    Description: This article presents an integrated approach for the probabilistic systemic risk analysis of a road network considering spatial seismic hazard with correlation of ground motion intensities, vulnerability of the network components, and the effect of interactions within the network, as well as, between roadway components and built environment to the network functionality. The system performance is evaluated at the system level through a global connectivity performance indicator, which depends on both physical damages to its components and induced functionality losses due to interactions with other systems. An object-oriented modeling paradigm is used, where the complex problem of several interacting systems is decomposed in a number of interacting objects, accounting for intra- and interdependencies between and within systems. Each system is specified with its components, solving algorithms, performance indicators and interactions with other systems. The proposed approach is implemented for the analysis of the road network in the city of Thessaloniki (Greece) to demonstrate its applicability. In particular, the risk for the road network in the area is calculated, specifically focusing on the short-term impact of seismic events (just after the earthquake). The potential of road blockages due to collapses of adjacent buildings and overpass bridges is analyzed, trying to individuate possible criticalities related to specific components/subsystems. The application can be extended based on the proposed approach, to account for other interactions such as failure of pipelines beneath the road segments, collapse of adjacent electric poles, or malfunction of lighting and signaling systems due to damage in the electric power network.
    Description: Published
    Description: 524–540
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Systemic vulnerability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We consider a seismicity forecast experiment conducted during the last 4 yr. At the beginning of each year, three models make a 1-yr forecast of the distribution of large earthquakes everywhere on the Earth. The forecasts are generated and the observations are collected in the Collaboratory for the Study of Earthquake Predictability (CSEP). We apply CSEP likelihood measures of consistency and comparison to see how well the forecasts match the observations, and we compare results from some intuitive reference models. These results illustrate some undesirable properties of the consistency tests: the tests can be extremely sensitive to only a few earthquakes, and yet insensitive to seemingly obvious flaws—a na ̈ıve hypothesis that large earthquakes are equally likely everywhere is not always rejected. The results also suggest that one should check the assumptions of the so-called T and W comparison tests, and we illustrate some methods to do so. As an extension of model assessment, we explore strategies to combine forecasts, and we discuss the implications for operational earthquake forecasting. Finally, we make suggestions for the next generation of global seismicity forecast experiments.
    Description: Published
    Description: 422-431
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: probabilistic forecasting ; statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Probabilistic tsunami hazard analysis (PTHA) relies on computationally demanding numerical simulations of tsunami generation, propagation, and non-linear inundation on high-resolution topo-bathymetric models. Here we focus on tsunamis generated by co-seismic sea floor dis- placement, that is, on Seismic PTHA (SPTHA). A very large number of tsunami simulations are typically needed to incorporate in SPTHA the full expected variability of seismic sources (the aleatory uncertainty). We propose an approach for reducing their number. To this end, we (i) introduce a simplified event tree to achieve an effective and consistent exploration of the seismic source parameter space; (ii) use the computationally inexpensive linear approximation for tsunami propagation to construct a preliminary SPTHA that calculates the probability of maximum offshore tsunami wave height (H Max) at a given target site; (iii) apply a two-stage filtering procedure to these ‘linear’ SPTHA results, for selecting a reduced set of sources and (iv) calculate ‘non-linear’ probabilistic inundation maps at the target site, using only the selected sources. We find that the selection of the important sources needed for approximating probabilistic inundation maps can be obtained based on the offshore HMax values only. The filtering procedure is semi-automatic and can be easily repeated for any target sites. We describe and test the performances of our approach with a case study in the Mediterranean that considers potential subduction earthquakes on a section of the Hellenic Arc, three target sites on the coast of eastern Sicily and one site on the coast of southern Crete. The comparison between the filtered SPTHA results and those obtained for the full set of sources indicates that our approach allows for a 75–80 per cent reduction of the number of the numerical simulations needed, while preserving the accuracy of probabilistic inundation maps to a reasonable degree.
    Description: Published
    Description: 574-588
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Tsunami ; Hazard ; Probabilistic ; Subduction ; Mediterranean ; SPTHA ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Real-time seismology has made significant improvements in recent years, with source parameters now available within a few tens of minutes after an earthquake. It is likely that this time will be further reduced, in the near future, by means of increased efficiency in real-time transmission,increasingdatacoverageandimprovementofthemethodologies.Inthiscontext, together with the development of new ground motion predictive equations (GMPEs) that are abletoaccountforsourcecomplexity,thegenerationofstronggroundmotionshakingmapsin quasi-real time has become ever more feasible after the occurrence of a damaging earthquake. However, GMPEs may not reproduce reliably the ground motion in the near-source region where the finite fault parameters have a strong influence on the shaking. Inthispaperwetestwhetheraccountingforsource-relatedeffectsiseffectiveinbettercharacterizingthegroundmotion.WeintroduceamodificationoftheGMPEswithintheShakeMap softwarepackage,andsubsequentlytesttheaccuracyofthenewlygeneratedshakemapsinpredictingthegroundmotion.ThetestisconductedbycontrollingtheperformanceofShakeMap as we decrease the amount of the available information. We then update ShakeMap with the GMPE modified with a corrective factor accounting for source effects, in order to better constrain these effects that likely influence the level of (near-source) ground shaking. Weinvestigatetwowell-recordedearthquakesfromJapan(the2000Tottori, Mw 6.6,andthe 2008 Iwate-Miyagi, Mw7.0, events) where the instrumental coverage is as dense as needed to ensure an objective appraisal of the results. The results demonstrate that the corrected GMPE can capture only some aspects of the ground shaking in the near-source area, neglecting other multidimensional effects, such as propagation effects and local site amplification.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile(DPC)under the contract 2007–2009 DPC-INGVS3project
    Description: Published
    Description: 1836-1848
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions ; Earthquake source observation ; Computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...