ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geodynamics and Tectonics  (140)
  • Marine Geosciences and Applied Geophysics  (136)
  • Oxford University Press  (276)
  • Elsevier
  • 2015-2019  (276)
  • 1930-1934
  • 1
    Publication Date: 2017-01-01
    Description: In general, the complex electrical resistivity in the subsurface is anisotropic. Despite this, algorithms for the tomographic inversion of complex resistivity data commonly assume isotropy, mainly due to the lack of anisotropic modelling and inversion schemes, potentially leading to artefacts in the inversion results in the presence of anisotropy. The development of an effective anisotropic complex resistivity inversion algorithm which utilizes the gradient information of some cost function benefits from understanding the characteristics of the problem's sensitivities, that is, the partial derivative of the impedance forward response with respect to the complex conductivities in the different spatial directions, as well as with respect to the different ratios of complex conductivities, that is, the different anisotropy ratios. We here derive expressions for these sensitivities and, based on a 2.5-D finite-element modelling algorithm, we compute and discuss sensitivity distributions as well as measurement response curves of typical surface and cross-borehole measurement configurations for 2-D subsurface anisotropic complex resistivity distributions. Depending on the electrode layout and measurement configuration, the sensitivity with respect to the conductivity in a particular direction shows a unique pattern, while for other directions sensitivity patterns are qualitatively similar. These sensitivity characteristics translate into important equivalences between impedance responses of local anisotropic and isotropic anomalies, for both magnitude and phase. Accordingly, with collinear surface arrays only the complex conductivity in the direction of the electrode layout can be unambiguously resolved, and with cross-borehole arrays only the conductivity in the vertical direction, provided an in-hole current injection is used. Nevertheless, anisotropy ratios involving these resolvable conductivity components are likewise detectable. The distinct shape of the measurement response curves, reflecting the distinct spatial patterns of the corresponding sensitivity distributions, suggest that optimized measurement configurations can be inferred for specific exploration questions involving electrical anisotropy and given electrode layouts. The gained insight into the characteristics of the sensitivity distributions of complex resistivity measurements in case of subsurface anisotropy should guide the implementation of effective anisotropic complex resistivity inversion schemes and lead to a routine use of such schemes in any resistivity and induced polarization surveys whenever subsurface electrical anisotropy could be encountered.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-01
    Description: The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen. The Poisson–Boltzmann equation is solved by implementing the model of Chai & Shi. The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a potential of –20 mV at the air–water interface, an enhancement of a factor 5–30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-01
    Description: In this study, we present a new synthesis of GPS velocities for tectonic deformation within the Tibetan Plateau and its surrounding areas, a combined data set of ~1854 GPS-derived horizontal velocity vectors. Assuming that crustal deformation is localized along major faults, a block modelling approach is employed to interpret the GPS velocity field. We construct a 30-element block model to describe present-day deformation in western China, with half of them located within the Tibetan Plateau, and the remainder located in its surrounding areas. We model the GPS velocities simultaneously for the effects of block rotations and elastic strain induced by the bounding faults. Our model yields a good fit to the GPS data with a mean residual of 1.08 mm a –1 compared to the mean uncertainty of 1.36 mm a –1 for each velocity component, indicating a good agreement between the predicted and observed velocities. The major strike-slip faults such as the Altyn Tagh, Xianshuihe, Kunlun and Haiyuan faults have relatively uniform slip rates in a range of 5–12 mm a –1 along most of their segments, and the estimated fault slip rates agree well with previous geologic and geodetic results. Blocks having significant residuals are located at the southern and southeastern Tibetan Plateau, suggesting complex tectonic settings and further refinement of accurate definition of block geometry in these regions.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-07
    Description: Using an up-to-date global plate rotation model, applied to the endpoints of preserved major spreading ridge isochrons, we have calculated the explicitly reconstructable length-weighted mean global half-spreading rate (HSR), ridge length and area production as a function of time since the end of the Cretaceous Normal Superchron at 83.0 Ma. Our calculations integrate uncertainties in rotation parameters and chron boundary ages with the partial sampling uncertainties arising from progressive subduction of older oceanic lithosphere and its preserved spreading record. This record of directly reconstructable oceanic ridge production provides a well-constrained baseline that can be compared to reconstructions that include the largely unconstrained extrapolated histories of entirely subducted oceanic plates. The directly reconstructable global mean HSR has not varied by more than ±15 per cent about an average rate of 28.4 ± 4.6 mm a –1 since 83 Ma. No long-term secular trend is evident: a maximum global mean half-rate of 32 ± 6 mm a –1 occurred from 33.1 Ma to about 25.8 Ma, with minima of 26 ± 5 mm a –1 between about 56 and 40.2 Ma, and 24 ± 1 mm a –1 since 3.2 Ma. Only this most recent interval has a rate that differs significantly (at ±2) from the long-term mean. The global, reconstructable ridge length at 56 Ma decreases by less than 15 per cent relative to the modern ridge system; by 83 Ma it has decreased by 38 per cent. These relatively high preserved ridge fractions mean that the estimated uncertainty due to partial sampling stays roughly equivalent to the estimated rotation model uncertainties, allowing long-term spreading rate variations of 〉20 per cent since the Late Cretaceous to be ruled out. In contrast, prior to 83 Ma too little oceanic lithosphere is preserved to reliably reconstruct global spreading rates.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-07
    Description: Joint inversion that simultaneously inverts multiple geophysical data sets to recover a common Earth model is increasingly being applied to exploration problems. Petrophysical data can serve as an effective constraint to link different physical property models in such inversions. There are two challenges, among others, associated with the petrophysical approach to joint inversion. One is related to the multimodality of petrophysical data because there often exist more than one relationship between different physical properties in a region of study. The other challenge arises from the fact that petrophysical relationships have different characteristics and can exhibit point, linear, quadratic, or exponential forms in a crossplot. The fuzzy c-means (FCM) clustering technique is effective in tackling the first challenge and has been applied successfully. We focus on the second challenge in this paper and develop a joint inversion method based on variations of the FCM clustering technique. To account for the specific shapes of petrophysical relationships, we introduce several different fuzzy clustering algorithms that are capable of handling different shapes of petrophysical relationships. We present two synthetic and one field data examples and demonstrate that, by choosing appropriate distance measures for the clustering component in the joint inversion algorithm, the proposed joint inversion method provides an effective means of handling common petrophysical situations we encounter in practice. The jointly inverted models have both enhanced structural similarity and increased petrophysical correlation, and better represent the subsurface in the spatial domain and the parameter domain of physical properties.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-12
    Description: Coal seam fires are a worldwide disaster of both ecological and economic importance. Their remote detection from the ground surface or using airborne techniques is required for developing efficient strategies to extinguish them. We investigate here the use of time-domain-induced polarization to localize coal seam fires. For laboratory experiments, we first introduce a modified time-domain-induced polarization methodology to quickly acquire and invert the secondary voltage distribution mapped after the shutdown of the primary current. A set of sandbox experiments is conducted in which coal is embedded into humidified sand. Raw coal alone generates significant induced polarization anomalies, above those shown by the sand. Even higher induced polarization anomalies are detected in presence of a coal seam fire. We postulate that the higher chargeability is due to the pyrolysis, which may enhance electronic polarization or the polarization associated with the cation exchange capacity (CEC) of the material. The position of the coal seam fire is well recovered inside the tank by inverting the secondary voltages in term of a source current density distribution. We also collected field data over a recognized coal seam fire in Colorado, USA. A chargeability anomaly (~800 mV V –1 ) and a resistivity anomaly (~1 Ohm m) are observed at the position of the coal seam fire. We propose a normalized burning front index (a scaled normalized chargeability) to image and localize, without ambiguity, the position of the coal seam fire in the subsurface. The 3-D reconstructed target is located below a negative self-potential anomaly (similarly to what is observed in laboratory experiments) and a temperature anomaly recorded at a depth of 30 cm.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-13
    Description: We explore thermal convection of a fluid with a temperature-dependent viscosity in a basally heated 3-D spherical shell using linear stability analyses and numerical experiments, while considering the application of our results to terrestrial planets. The inner to outer radius ratio of the shell f assumed in the linear stability analyses is in the range of 0.11–0.88. The critical Rayleigh number R c for the onset of thermal convection decreases by two orders of magnitude as f increases from 0.11 to 0.88, when the viscosity depends sensitively on the temperature, as is the case for real mantle materials. Numerical simulations carried out in the range of f  = 0.11–0.55 show that a thermal boundary layer (TBL) develops both along the surface and bottom boundaries to induce cold and hot plumes, respectively, when f is 0.33 or larger. However, for smaller f values, a TBL develops only on the bottom boundary. Convection occurs in the stagnant-lid regime where the root mean square velocity on the surface boundary is less than 1 per cent of its maximum at depth, when the ratio of the viscosity at the surface boundary to that at the bottom boundary exceeds a threshold that depends on f . The threshold decreases from 10 6.5 at f  = 0.11 to 10 4 at f  = 0.55. If the viscosity at the base of the convecting mantle is 10 20 –10 21  Pa s, the Rayleigh number exceeds R c for Mars, Venus and the Earth, but does not for the Moon and Mercury; convection is unlikely to occur in the latter planets unless the mantle viscosity is much lower than 10 20  Pa s and/or the mantle contains a strong internal heat source.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-13
    Description: Subducting oceanic lithosphere is an example of a thin sheet-like object whose characteristic lateral dimension greatly exceeds its thickness. Here we exploit this property to derive a new hybrid boundary-integral/thin sheet (BITS) representation of subduction that combines in a single equation all the forces acting on the sheet: gravity, internal resistance to bending and stretching, and the tractions exerted by the ambient mantle. For simplicity, we limit ourselves to 2-D. We solve the BITS equations using a discrete Lagrangian approach in which the sheet is represented by a set of vertices connected by edges. Instantaneous solutions for the sinking speed of a slab attached to a trailing flat sheet obey a scaling law of the form V / V Stokes  = fct(St), where V Stokes is a characteristic Stokes sinking speed and St is the sheet's flexural stiffness. Time-dependent solutions for the evolution of the sheet's shape and thickness show that these are controlled by the viscosity ratio between the sheet and its surroundings. An important advantage of the BITS approach is the possibility of generalizing the sheet's rheology, either to a viscosity that varies along the sheet or to a non-Newtonian shear-thinning rheology.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-13
    Description: Rock permeability is an important parameter for the formation evaluation. In this paper, a new method with streaming current is proposed to determine the sample permeability based on the electrokinetic effects, and is proved by the experimental measurements. Corresponding to this method, we have designed an experimental setup and a test system, then performed the streaming current (potential) and electro-osmosis pressure experiments with 23 sandstone samples at 0.05 mol l –1 NaCl solution. The streaming current (potential) coefficient and electro-osmosis pressure coefficient are obtained, respectively, with the experimental data at low frequencies with AC lock-in technique. The electrokinetic permeabilities are further calculated with these coefficients. The results are consistent well with the gas permeability measured with Darcy's law, which verifies the current method for estimating rock permeability. Our measurements are also analysed and compared with previous measurements. The results indicate that our method can reflect the essence of electrokinetic effects better and simplify the electrokinetic measurements as well. In addition, we discuss the influences of experimental artefacts (core holder and confining pressure installation) on the electrokinetic data. The results show that the trough phenomenon, appeared in frequency curves of streaming current (potential) coefficients, is induced by the resonance of the core-holder/vibrator system. This is important for the design of electrokinetic setup and the analysis of low-frequency response of the electrokinetic coupling coefficients.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-16
    Description: The aftershock distribution of the 1933 Sanriku-oki outer trench earthquake is estimated by using modern relocation methods and a newly developed velocity structure to examine the spatial extent of the source-fault and the possibility of a triggered interplate seismicity. In this study, we first examined the regional data quality of the 1933 earthquake based on smoked-paper records and then relocated the earthquakes by using the 3-D velocity structure and double-difference method. The improvements of hypocentre locations using these methods were confirmed by the examination of recent earthquakes that are accurately located based on ocean bottom seismometer data. The results show that the 1933 aftershocks occurred under both the outer- and inner-trench-slope regions. In the outer-trench-slope region, aftershocks are distributed in a ~280-km-long area and their depths are shallower than 50 km. Although we could not constrain the fault geometry from the hypocentre distribution, the depth distribution suggests the whole lithosphere is probably not under deviatoric tension at the time of the 1933 earthquake. The occurrence of aftershocks under the inner trench slope was also confirmed by an investigation of waveform frequency difference between outer and inner trench earthquakes as recorded at Mizusawa. The earthquakes under the inner trench slope were shallow (depth less double equals30 km) and the waveforms show a low-frequency character similar to the waveforms of recent, precisely located earthquakes in the same area. They are also located where recent activity of interplate thrust earthquakes is high. These suggest that the 1933 outer-trench-slope main shock triggered interplate earthquakes, which is an unusual case in the order of occurrence in contrast with the more common pairing of a large initial interplate shock with subsequent outer-slope earthquakes. The off-trench earthquakes are distributed about 80 km width in the trench perpendicular direction. This wide width cannot be explained from a single high-angle fault confined at a shallow depth (depth less double equals50 km). The upward motion of the 1933 tsunami waveform records observed at Sanriku coast also cannot be explained from a single high-angle west-dipping normal fault. If we consider additional fault, involvement of high-angle, east-dipping normal faults can better explain the tsunami first motion and triggering of the aftershock in a wide area under the outer trench slope. Therefore multiple off-trench normal faults may have activated during the 1933 earthquake. We also relocated recent (2001–2012) seismicity by the same method. The results show that the present seismicity in the outer-trench-slope region can be divided into several groups along the trench. Comparison of the 1933 rupture dimensions based on our aftershock relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited to the region where fault scarps are largely trench parallel and cross cut the seafloor spreading fabric. These findings imply that bending geometry and structural segmentation of the incoming plate largely controls the spatial extent of the 1933 seismogenic faulting. In this shallow rupture model for this largest outer trench earthquake, triggered seismicity in the forearc and structural control of faulting represent an important deformation styles for off-trench and shallow megathrust zones.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-24
    Description: Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C 11 , C 22 , and C 33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C 33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C 11 and C 22 if we have large enough offsets. The elastic coefficients C 13 , C 23 , and C 12 suffer from strong trade-offs with C 55 , C 44 , and C 66 , respectively. The trade-offs between C 13 and C 55 , as well as C 23 and C 44 , can be partially mitigated if we acquire P – SV and SV – SV waves. However, to reduce the trade-offs between C 12 and C 66 , we require credible SH – SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-08-05
    Description: Geodetic, geologic and palaeomagnetic data reveal that Oregon (western USA) rotates clockwise at 0.3 to 1.0° Ma –1 (relative to North America) about an axis near the Idaho–Oregon–Washington border, while northeast Washington is relatively fixed. This rotation has been going on for at least 15 Ma. The Yakima fold and thrust belt (YFTB) forms the boundary between northern Oregon and central Washington where convergence of the clockwise-rotating Oregon block is apparently accommodated. North–south shortening across the YFTB has been thought to occur in a fan-like manner, increasing in rate to the west. We obtained high-accuracy, high-density geodetic GPS measurements in 2012–2014 that are used with earlier GPS measurements from the 1990s to characterize YFTB kinematics. The new results show that the deformation associated with the YFTB starts at the Blue Mountains Anticline in northern Oregon and extends north beyond the Frenchman Hills in Washington, past the epicentre of the 1872 M w 7.0 Entiat earthquake to 49°N. The north–south strain rate across the region is 2 to 3 x 10 –9 yr –1 between the volcanic arc and the eastern edge of the YFTB (241.0°E); east of there it drops to about 10 –9 yr –1 . At the eastern boundary of the YFTB, faults and earthquake activity are truncated by a north-trending, narrow zone of deformation that runs along the Pasco Basin and Moses Lake regions near 240.9°E. This zone, abutting the Department of Energy Hanford Nuclear Reservation, accommodates about 0.5 mm yr –1 of east to northeast shortening. A similar zone of N-trending transpression is seen along 239.9°E where there is a change in the strike of the Yakima folds. The modern deformation of the YFTB is about 600 km wide from south to north and internally may be controlled by pre-existing crustal structure.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-07-13
    Description: The Central Anatolian orogenic plateau is represented by young volcanism, rapid plateau uplift and distinctive (past and active) tectonic deformation. In this study, we consider observational data in terms of regional present-day geodynamics in the region. The residual topography of Central Anatolia was derived to define the regional isostatic conditions according to Airy isostasy and infer the potential role of ‘dynamic topography’. 2-D thermomechanical forward models for coupled mantle-lithosphere flow/deformation were conducted along an N–S directional profile through the region (e.g. northern/Pontides, interior and southern/Taurides). These models were based on seismic tomography data that provide estimates about the present-day mantle thermal structure beneath the Anatolian plate. We compare the modelling results with calculated residual topography and independent data sets of geological deformation, gravity and high surface heat flow/widespread geothermal activity. Model results suggest that there is ~1 km of mantle flow induced dynamic topography associated with the sublithospheric flow driven by the seismically inferred mantle structure. The uprising mantle may have also driven the asthenospheric source of volcanism in the north (e.g. Galatia volcanic province) and the Cappadocia volcanic province in the south while elevating the surface in the last 10 Myr. Our dynamic topography calculations emphasize the role of vertical forcing under other orogenic plateaux underlain by relatively thin crust and low-density asthenospheric mantle.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-07-25
    Description: In many geological systems, inversion of density stratification sets in Rayleigh–Taylor (RT) instabilities, leading to an ascent of relatively low-density materials through the high-density overburden in the form of diapirs. These diapirs often originate from dipping low-density layers. This study aims to show how the initial tilt of such source layers can control the ascent behaviour of diapirs initiated by RT instabilities. Using two-layer viscous models we produced RT instabilities in physical experiments, and investigated the effects of source-layer tilts ( β ). Our experiments suggest that these diapirs ascend with contrasting lateral spreading rates in the up and down slope directions, resulting in their axi-asymmetric geometry. However, their heads retain a circular outline on the horizontal top surface, where the upwelling axis is located away from their geometric centre in the upslope direction. In this paper, we present a series of experimental models to demonstrate the spectrum of axi-symmetric to -asymmetric geometrical transitions with increasing β . Our experiments also reveal that when β is large (〉4°) the diapirs become unstable, resulting in a continuous migration of their stems in the upslope direction. Using the volume of fluid method we ran computational fluid dynamic (CFD) simulations to study the underlying hydrodynamics of axi-asymmetric diapiric growth. The CFD simulations show that β 〉 0° conditions develop stronger flow vortices on the downslope side of an ascending diapir, leading to a pressure difference between the up- and downslope flanks. Such a differential pressure causes the diapir head to spread at a faster rate in the tilt direction. An estimate of the asymmetric spreading rates is given as a function of β . Our present study provides a fundamental understanding of the hydrodynamic flow structure responsible for the asymmetric growth of RT instabilities on tilted source layers, as applicable to a wide range of large-scale geological settings, such as sedimentary basins and subduction zones.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-07-25
    Description: Typically, seismic data are sparsely and irregularly sampled due to limitations in the survey environment and these cause problems for key seismic processing steps such as surface-related multiple elimination or wave-equation-based migration. Various interpolation techniques have been developed to alleviate the problems caused by sparse and irregular sampling. Among many interpolation techniques, matching pursuit interpolation is a robust tool to interpolate the regularly sampled data with large receiver separation such as crossline data in marine seismic acquisition when both pressure and particle velocity data are used. Multicomponent matching pursuit methods generally used the sinusoidal basis function, which have shown to be effective for interpolating multicomponent marine seismic data in the crossline direction. In this paper, we report the use of wavelet basis functions which further enhances the performance of matching pursuit methods for de-aliasing than sinusoidal basis functions. We also found that the range of the peak wavenumber of the wavelet is critical to the stability of the interpolation results and the de-aliasing performance and that the range should be determined based on Nyquist criteria. In addition, we reduced the computational cost by adopting the inner product of the wavelet and the input data to find the parameters of the wavelet basis function instead of using L-2 norm minimization. Using synthetic data, we illustrate that for aliased data, wavelet-based matching pursuit interpolation yields more stable results than sinusoidal function-based one when we use not only pressure data only but also both pressure and particle velocity together.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-08-05
    Description: The geomechanical analysis of a highly compartmentalized reservoir is performed to simulate the seafloor subsidence due to gas production. The available observations over the hydrocarbon reservoir consist of bathymetric surveys carried out before and at the end of a 10-yr production life. The main goal is the calibration of the reservoir compressibility c M , that is, the main geomechanical parameter controlling the surface response. Two conceptual models are considered: in one (i) c M varies only with the depth and the vertical effective stress (heterogeneity due to lithostratigraphic variability); in another (ii) c M varies also in the horizontal plane, that is, it is spatially distributed within the reservoir stratigraphic units. The latter hypothesis accounts for a possible partitioning of the reservoir due to the presence of sealing faults and thrusts that suggests the idea of a block heterogeneous system with the number of reservoir blocks equal to the number of uncertain parameters. The method applied here relies on an ensemble-based data assimilation (DA) algorithm (i.e. the ensemble smoother, ES), which incorporates the information from the bathymetric measurements into the geomechanical model response to infer and reduce the uncertainty of the parameter c M . The outcome from conceptual model (i) indicates that DA is effective in reducing the c M uncertainty. However, the maximum settlement still remains underestimated, while the areal extent of the subsidence bowl is overestimated. We demonstrate that the selection of the heterogeneous conceptual model (ii) allows to reproduce much better the observations thus removing a clear bias of the model structure. DA allows significantly reducing the c M uncertainty in the five blocks (out of the seven) characterized by large volume and large pressure decline. Conversely, the assimilation of land displacements only partially constrains the prior c M uncertainty in the reservoir blocks marginally contributing to the cumulative seafloor subsidence, that is, blocks with low pressure.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-07-08
    Description: This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr –1 ) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-06-23
    Description: Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution 3-D seismic data were previously collected in 2006. 2-D CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within subseafloor fluid flow pipe structures.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-05-05
    Description: In Europe, common input data types for seismic hazard evaluation include earthquake catalogues, seismic zonation models and ground motion models, all with well-constrained epistemic uncertainties. In contrast, neotectonic deformation models and their related uncertainties are rarely considered in earthquake forecasting and seismic hazard studies. In this study, for the first time in Europe, we developed a seismic hazard model based exclusively on active fault and geodynamic deformation models. We applied it to the External Dinarides, a slow-deforming fold-and-thrust belt in the Central Mediterranean. The two deformation models furnish consistent long-term earthquake rates above the M w 4.7 threshold on a latitude/longitude grid with 0.2° spacing. Results suggest that the use of deformation models is a valid alternative to empirical-statistical approaches in earthquake forecasting in slow-deforming regions of Europe. Furthermore, we show that the variability of different deformation models has a comparable effect on the peak ground motion acceleration uncertainty as do the ground motion prediction equations.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-05-06
    Description: One of the main applications of magnetic field measurements in boreholes is the detection of unexploded ordnance or buried utility structures like pipes or tiebacks. Even though the advantage of fully oriented magnetic vector measurements have long been recognized and could significantly reduce costs and risks, the tools used for those purposes typically measure only the total magnetic field, the vertical and horizontal components or gradients thereof. The Göttingen Bohrloch Magnetometer uses three fibre optic gyros to record its orientation and thus enables us to compute high-quality three-component magnetic vector data regardless of borehole orientation. The measurements described in this paper were run in the scientific borehole Cuxhaven Lüdingworth 1/1A, which was drilled as a part of the ‘Coastal Aquifer Test field’ project to study the dynamics of the saltwater/freshwater interface. As the drill string got stuck during drilling of the first borehole, a second hole was drilled in the immediate vicinity. The drill string lies at a depth between 80 and 114 m at a distance of only 2.5 m southeast of the borehole used for the measurements, making it an ideal target to demonstrate the benefits of vector magnetic surveys. Although the theories to calculate magnetic fields of objects with different shapes is well established and do not need to be tested, they almost exclusively include approximations of the geometry. It is not obvious whether these approximations are suited to describe real data, or whether additional effects or refinements have to be considered. We use both a simplified monopole model and a cylinder model to fit the data and are able to determine the position of the drill string within a statistical error of approximately 10 cm. Additionally, we show that the location of the drill string could not have been determined by measurements of the total field or its horizontal and vertical component alone and that those methods would require the drilling of additional boreholes to obtain an unambiguous result.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-05-11
    Description: An important real world application of doublet flow occurs in well design of both geothermal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and extraction wells is that mass balance is commonly assumed between the injected and produced fluid. Because the doublets are considered closed loops, the injection fluid is assumed to eventually reach the producer well and all the produced fluid ideally comes from stream tubes connected to the injector of the well pair making up the doublet. We show that when an aquifer background flow occurs, doublets will rarely retain closed loops of fluid recirculation. When the far-field flow rate increases relative to the doublet's strength, the area occupied by the doublet will diminish and eventually vanishes. Alternatively, rather than using a single injector (source) and single producer (sink), a linear array of multiple injectors separated by some distance from a parallel array of producers can be used in geothermal energy projects as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet. Again, any far-field flow that is strong enough will breach through the line doublet, which then splits into two vortices. Apart from fundamental insight into elementary flow dynamics, our new results provide practical clues that may contribute to improve the planning and design of doublets and direct line drives commonly used for flow management of groundwater, geothermal and hydrocarbon reservoirs.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-04-07
    Description: In November 2010, intense seismic activity including 29 events with a magnitude above 5.0, started in the western part of the Gulf of Aden, where the structure of the oceanic spreading ridge is characterized by a series of N115°-trending slow-spreading segments set within an EW-trending rift. Using signals recorded by permanent and temporary networks in Djibouti and Yemen, we located 1122 earthquakes, with a magnitude ranging from 2.1 to 5.6 from 2010 November 1 to 2011 March 31. By looking in detail at the space–time distribution of the overall seismicity, and both the frequency and the moment tensor of large earthquakes, we re-examine the chronology of this episode. In addition, we also interpret the origin of the activity using high-resolution bathymetric data, as well as from observations of seafloor cable damage caused by high temperatures and lava flows. The analysis allows us to identify distinct active areas. First, we interpret that this episode is mainly related to a diking event along a specific ridge segment, located at E044°. In light of previous diking episodes in nearby subaerial rift segments, for which field constraints and both seismic and geodetic data exist, we interpret the space–time evolution of the seismicity of the first few days. Migration of earthquakes suggests initial magma ascent below the segment centre. This is followed by a southeastward dike propagation below the rift immediately followed by a northwestward dike propagation below the rift ending below the northern ridge wall. The cumulative seismic moment associated with this sequence reaches 9.1 x 10 17 Nm, and taking into account a very low seismic versus geodetic moment, we estimate a horizontal opening of ~0.58–2.9 m. The seismic activity that followed occurred through several bursts of earthquakes aligned along the segment axis, which are interpreted as short dike intrusions implying fast replenishment of the crustal magma reservoir feeding the dikes. Over the whole period, the opening is estimated to be ~1.76–8.8 m across the segment. A striking feature of this episode is that the seismicity remained confined within one individual segment, whereas the adjacent en-echelon segments were totally quiescent, suggesting that the magma supply system of one segment is disconnected from those of the neighbouring segments. Second, we identify activity induced by the first intrusion with epicentres aligned along an N035°E-trending, ~30 km long at the northwestern end of the active opening segment. This group encompasses more than seven earthquakes with magnitude larger than 5.0, and with strike-slip focal mechanisms consistent with the faults identified in the bathymetry and the structural pattern of the area. We propose that a transform fault is currently in formation which indicates an early stage of the ridge segmentation, at the locus of the trend change of the spreading ridge, which also corresponds to the boundary between a clear oceanic lithosphere and the zone of transform between continental and oceanic crust.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-04-07
    Description: We challenge the perspective that seismicity could contribute to polar motion by arguing quantitatively that, in first approximation and on the average, interseismic deformations can compensate for it. This point is important because what we must simulate and observe in Earth Orientation Parameter time-series over intermediate timescales of decades or centuries is the residual polar motion resulting from the two opposing processes of coseismic and interseismic deformations. In this framework, we first simulate the polar motion caused by only coseismic deformations during the longest period available of instrumental seismicity, from 1900 to present, using both the CMT and ISC-GEM catalogues. The instrumental seismicity covering a little longer than one century does not represent yet the average seismicity that we should expect on the long term. Indeed, although the simulation shows a tendency to move the Earth rotation pole towards 133°E at the average rate of 16.5 mm yr –1 , this trend is still sensitive to individual megathrust earthquakes, particularly to the 1960 Chile and 1964 Alaska earthquakes. In order to further investigate this issue, we develop a global seismicity model (GSM) that is independent from any earthquake catalogue and that describes the average seismicity along plate boundaries on the long term by combining information about present-day plate kinematics with the Anderson theory of faulting, the seismic moment conservation principle and a few other assumptions. Within this framework, we obtain a secular polar motion of 8 mm yr –1 towards 112.5°E that is comparable with that estimated from 1900 to present using the earthquake catalogues, although smaller by a factor of 2 in amplitude and different by 20° in direction. Afterwards, in order to reconcile the idea of a secular polar motion caused by earthquakes with our simplest understanding of the seismic cycle, we adapt the GSM in order to account for interseismic deformations and we use it to quantify, for the first time ever, their contribution to polar motion. Taken together, coseismic and interseismic deformations make the rotation pole wander around the north pole with maximum polar excursions of about 1 m. In particular, the rotation pole moves towards about Newfoundland when the interseismic contribution dominates over the coseismic ones (i.e. during phases of low seismicity or, equivalently, when most of the fault system associated with plate boundaries is locked). When megathrust earthquakes occur, instead, the rotation pole is suddenly shifted in an almost opposite direction, towards about 133°E.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-03-09
    Description: While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U x L . When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U x L favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall and hanging wall bending. This behaviour produces unrealistic deformation patterns that can hinder the geological relevance of long-term rifting models that assume a viscoplastic rheology.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-01-02
    Description: Although seismic attenuation measurements have great potential to enhance our knowledge of physical conditions and rock properties, their application is limited because robust methods for improving both the resolution and accuracy of attenuation estimates have not yet been established. We propose attenuation estimation methods for zero-offset vertical seismic profile (VSP) data by combining seismic interferometry (SI) and the modified median frequency shift (MMFS) method developed for attenuation estimation using sonic waveform data. The configuration of zero-offset VSP data is redatumed to that of the sonic logging measurement by adopting two types of SI: deconvolution interferometry and crosscorrelation interferometry (CCI). Then, we can apply the MMFS method to the redatumed VSP data. Although the amplitude information estimated from CCI is biased, we propose a correction method for this bias to correctly estimate attenuation. First, to investigate the performance both in resolution and accuracy, we apply different trace separations to synthetic data with random noise at different signal-to-noise ratio levels. Second, we estimate the influence of residual reflection events after wavefield separation on attenuation estimation. The proposed methods provide more stable attenuation estimates in comparison with the spectral ratio method because the mean-median procedure suppresses random events and characteristic features caused by residual reflection events in spectral domain. Our numerical experiments also imply that the proposed methods can estimate scattering attenuation values even if frequency components are not changed between the two receiver depths. Finally, by preliminarily applying the proposed methods to field VSP data, we demonstrate the advantages of the proposed method in the resolution and stability of attenuation estimates and these observations correlate with those of numerical tests.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-07-04
    Description: Capacitively Coupled Resistivity (CCR) is conventionally used to emulate DC resistivity measurements and may provide important information about the ice content of material in periglacial areas. The application of CCR theoretically enables the determination of both electrical parameters, that is, the resistivity and the electrical permittivity, by analysing magnitude and phase shift spectra. The electrical permittivity may dominate the impedance, especially in periglacial areas or regions of hydrogeological interest. However, previous theoretical work suggested that the phase shift may strongly depend on electrode height above ground, implying that electrode height must be known with great accuracy to determine electrical permittivity. Here, we demonstrate with laboratory test measurements, theoretical modelling and by analysing the Jacobian matrix of the inversion that the sensitivity towards electrode height is drastically reduced if the electrical permittivity is frequency dependent in a way that is typical for ice. For the first time, we used a novel broad-band CCR device ‘Chameleon’ for a field test located in one of the ridge galleries beneath the crest of Mount Zugspitze. A permanently ice covered bottom of a tunnel was examined. For the inversion of the measured spectra, the frequency dependence of the electrical parameters was parametrized in three different ways: A Debye Model for pure ices, a Cole–Cole Model for pure ices and a dual Cole–Cole Model including interfacial water additionally. The frequency-dependent resistivity and permittivity spectra obtained from the inversion, including low- and high-frequency limits, agree reasonably well with laboratory and field measurements reported in the literature.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-07-06
    Description: We evaluate the applicability and the effectiveness of GPR attribute analysis for high-resolution glacier imaging and characterization, testing this approach on 4-D GPR multifrequency data collected in a small glacier in the Eastern Alps, by repeating the acquisition along the same profiles in four different periods of the year 2013. The main objectives are to image and characterize the glacier's inner structure and to quantitatively monitor the seasonal thawing of near-surface frozen materials (snow/firn). A multiattribute approach is used to characterize the subsurface through different attribute categories, including instantaneous and textural attributes considering not only amplitude-, phase- and frequency-related attributes, but also other more complex and integrated parameters. We combine information from more than one attribute into a single image with composite displays, using overlays or mixed displays. The results demonstrate that the developed GPR attribute analysis can provide significant improvements in the discrimination of GPR signals, and obtain enhanced and more constrained data interpretations.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-08-25
    Description: In the context of the 2014 realization of the International Terrestrial Reference Frame, the International DORIS (Doppler Orbitography Radiopositioning Integrated by Satellite) Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS combination centre estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time-series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2–3 mm yr –1 . For five of the sites (Arequipa, Dionysos/Gavdos, Manila and Santiago) with horizontal velocity differences with respect to these models larger than 10 mm yr –1 , comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0–2014.0 from the University of La Rochelle solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm yr –1 at 23 percent of the sites. At Thule, the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time-series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-08-27
    Description: We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, T e , of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that T e can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modelling based on a uniform T e elastic plate suggests that T e increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10 °C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that T e landward of the outer rise is generally 40–65 per cent less than the T e seaward of the outer rise. Both landward and seaward T e increases with age of the lithosphere and are given by the depth to the 342–349 °C and 671–714 °C oceanic isotherm, respectively. A dependence of T e on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed T e to the predicted T e based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze, Evans & Goetze, Raterron et al . and Mei et al . all provide quite a good fit to the observed T e at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally too strong to fit the observations. The discrepancy in rheology within Pacific plate may be caused by differences in the timescale of loading and therefore the amount of viscoelastic stress relaxation that has occurred. Other possibilities include thermal rejuvenation and magma-assisted flexure at the Hawaiian Islands.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-08-27
    Description: Migration velocity analysis aims at automatically updating the large-scale components of the velocity model, called macromodel. Extended Common Image Gathers are panels used to evaluate focusing after imaging and are constructed as a function of a spatial shift introduced in the imaging condition. We investigate how transmitted waves can also be used in migration velocity analysis: instead of back-propagating the residuals associated with reflected waves, we propose to back-propagate the full wavefield. The image function, equivalent to the migrated section for reflected data, does not exhibit localized events in space along horizons but is still sensitive to the choice of the background velocity model and can thus be coupled to the same objective function defined in the image domain. In order to enhance the benefits of direct waves, we consider a cross-well configuration. Direct waves provide a large illumination between two vertical wells. Associated Common Image Gathers present different characteristics than the ones associated with reflected waves in surface acquisition. In particular, energy is spread over up to the maximum penetration depth. We invert cross-well seismic data along two lines. In the first case, the input data contain the full wavefield dominated by transmitted waves. It demonstrates the possibility to handle transmitted waves to determine the velocity model. It appears that the misfit in the data domain is largely reduced after inversion. In the second case, we use the same algorithm, but with reflected observed data only, as in a classical approach. Most of velocity updates are localized around the reflectivity, leading to an incorrect final model. This demonstrates the benefit of transmitted waves for migration velocity analysis in a cross-well configuration.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-08-28
    Description: Large gaps and inconsistencies remain in published estimates of Nubia–Somalia plate motion based on reconstructions of seafloor spreading data around Africa. Herein, we use newly available reconstructions of the Southwest Indian Ridge at ~1-Myr intervals since 20 Ma to estimate Nubia–Somalia plate motion farther back in time than previously achieved and with an unprecedented degree of temporal resolution. At the northern end of the East African rift, our new estimates of Nubia–Somalia motion for six times from 0.78 Ma to 5.2 Ma differ by only 2 per cent from the rift-normal component of motion that is extrapolated from a recently estimated GPS angular velocity. The rate of rift-normal extension thus appears to have remained steady since at least 5.2 Ma. Our new rotations indicate that the two plates have moved relative to each other since at least 16 Ma and possibly longer. Motion has either been steady since at least 16 Ma or accelerated modestly between 6 and 5.2 Ma. Our Nubia–Somalia rotations predict 42.5 ± 3.8 km of rift-normal extension since 10.6 Ma across the well-studied, northern segment of the Main Ethiopian Rift, consistent with 40–50 km estimates for extension since 10.6 Myr based on seismological surveys of this narrow part of the plate boundary. Nubia–Somalia rotations are also derived by combining newly estimated Somalia–Arabia rotations that reconstruct the post-20-Ma opening of the Gulf of Aden with Nubia–Arabia rotations estimated via a probabilistic analysis of plausible opening scenarios for the Red Sea. These rotations predict Nubia–Somalia motion since 5.2 Myr that is consistent with that determined from Southwest Indian Ridge data and also predict 40 ± 3 km of rift-normal extension since 10.6 Ma across the Main Ethiopian Rift, consistent with our 42.5 ± 3.8 km Southwest Indian Ridge estimate. Our new rotations exclude at high confidence level previous estimates of 12 ± 13 and 123 ± 14 km for rift-normal extensions across the Main Ethiopian Rift since 10.6 Ma based on reconstructions of Chron 5n.2 along the Southwest Indian Ridge. Sparse coverage of magnetic reversals older than 16 Ma along the western third of the Southwest Indian Ridge precludes reliable determinations of Nubia–Somalia plate motion before 16 Ma, leaving unanswered the key question of when the motion between the two plates began.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-06-30
    Description: An integrated approach to interpret Self-Potential (SP) anomalies based on spectral analysis and tomographic methods is presented. The Maximum Entropy Method (MEM) is used for providing accurate estimates of the depth of the anomaly source. The 2-D tomographic inversion technique, based on the underground charge occurrence probability (COP) function, is, then, used to fully characterize the anomalous body, as the MEM is not helpful in delineating the shape of the anomaly source. The proposed integrated approach is applied for the inversion of synthetic SP data generated by geometrically simple anomalous bodies, such as cylinders and inclined sheets. This numerical study has allowed the determination of mathematical relationships between zero lines of the COP distributions, the polarization angles and the positions along the profile of the causative sources, which have been of great help for interpreting the related SP anomalies. Finally, the analysis of field examples shows the high potential applicability of the proposed integrated approach for SP data inversion.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-07-04
    Description: The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr –1 , 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5–6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-07-03
    Description: Volcanic and tectonic events are the main processes involved in the generation of the oceanic crust and responsible for the seismicity associated with seafloor spreading. To monitor this activity, usually not or poorly detected by land-based seismological stations, we deployed from February 2012 to February 2013 a network of autonomous hydrophones to compare the behaviour of the ultraslow-spreading Southwest Indian ridge (SWIR) with that of the intermediate-spreading Southeast Indian ridge (SEIR). The rate of seismicity is similar for both ridges, suggesting that there is no systematic relationship between seismicity and spreading rates. The along-axis distribution of the seismic events, however, does differ, reflecting the rate dependence of accretion modes. Earthquakes are sparse and regularly spaced and scattered along the SWIR, reflecting prevailing tectonic processes. By contrast, along the SEIR, events are irregularly distributed and focus at ridge-segment ends and transforms faults, reflecting the ridge segmentation; only two swarms occurred at a segment centre and are probably caused by a magmatic event. This seismicity distribution thus looks controlled by segment-scale crustal heterogeneities along the SEIR and by regional-scale contrasting accretion processes along the SWIR, probably driven by different lithospheric and asthenospheric dynamics on either side of the Melville fracture zone. The comparison of hydroacoustic and teleseismic catalogues shows that, along these spreading ridges, the background seismicity observed in 1 yr by a hydroacoustic network is representative of the seismicity observed over two decades by land-based networks.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-05-29
    Description: A Neogene magmatic reactivation of the Manihiki Plateau, a large igneous province (LIP) in the central Pacific, is studied using seismic reflection data. Igneous diapirs have been identified exclusively within a narrow WNW–ESE striking corridor in the southern High Plateau (HP), which is parallel to the Neogene Pacific Plate motion and overlaps with an extrapolation of the Society Islands Hotspot (SIH) path. The igneous diapirs are characterized by a narrow width (〉5 km), penetration of the Neogene sediments, and they become progressively younger towards the East (23–10 Ma). The magmatic source appears to be of small lateral extent, which leads to the conclusion that the diapirs represent Neogene hotspot volcanism within a LIP, and thus may be an older, previously unknown extension of the SIH track (〉4.5 Ma). Comparing hotspot volcanism within oceanic and continental lithosphere, we further conclude that hotspot volcanism within LIP crust has similarities to tectonically faulted continental crust.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-03
    Description: Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index fivefold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation well-logging (acoustic and temperature [ T ] logs) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-06-03
    Description: We investigate the spatial coherence of underwater ambient noise using a yearlong time-series measured off Ascension Island. Qualitative agreement with observed cross-correlations is achieved using a simple range-dependent model, constrained by earlier, active tomographic studies in the area. In particular, the model correctly predicts the existence of two weakly dispersive normal modes in the microseism frequency range, with the group speed of one of the normal modes being smaller than the sound speed in water. The agreement justifies our interpretation of the peaks of the measured cross-correlation function of ambient noise as modal arrivals, with dispersion that is sensitive to crustal velocity structure. Our observations are consistent with Scholte to Moho head wave coupled propagation, with double mode conversion occurring due to the bathymetric variations between receivers. We thus demonstrate the feasibility of interrogating crustal properties using noise interferometry of moored hydrophone data at ranges in excess of 120 km.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-06-03
    Description: Recent tectonic reconstructions of the South Atlantic have partitioned the ocean basin into several segments based upon one or more proposed intraplate South American deformation zones. In several of these reconstructions, opening of the southern segment(s) by seafloor spreading prior to Aptian-Albian time is accompanied by contemporaneous strike-slip motion along an intraplate boundary extending southeastward from the Andean Cochabamba—Santa Cruz bend to the Rio Grande Fracture Zone (RGFZ). We have examined new magnetic data over the Pelotas, Santos and Campos Basins, offshore Argentina and Brazil, acquired by ION-GXT in tandem with long-offset, long record seismic reflection data, and identified seafloor spreading anomalies M4, M3, M2 and M0 (~131, ~129, ~128 and ~125 Ma). Integrating these results with our earlier work, we have been able to correlate magnetochrons M4, M3, M2 and M0 north and south of the RGFZ on the South American margin, and north and south of the Walvis Ridge on the African side. Our results are therefore inconsistent with diachronous opening models that involve substantial continental strike-slip motion north of RGFZ during M4 to M0 time. Although the ocean basin may have opened from south to north, our results indicate that seafloor spreading began north of the RGFZ earlier than previously proposed.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-09-02
    Description: Many mechanisms control the state of stress within Earth plates. First-order well-known mechanisms include stresses induced by lateral variations of lithospheric density structure, sublithospheric tractions, ridge push and subduction pull. In this study, we attempt to quantify the influence of these mechanisms to understand the origin of stresses in the lithosphere, choosing the African plate (TAP) as an example. A finite-element based suite, Proshell, was developed to combine several data sets, to estimate the gravitational potential energy (GPE) of the lithosphere and to calculate stresses acting on the real (non-planar) geometry of TAP. We introduce several quantitative parameters to measure the degree of fit between the model and observations. Our modelling strategy involves nine series of numerical experiments. We start with the simplest possible model and then, step by step, build it up to be a more physically realistic model, all the while discussing the influence of each additional component. The starting (oversimplified) model series (1) is based on the CRUST2 data set for the crust and a half-space-cooling approximation of the lithospheric mantle. We then describe models (series 2–5) that account for lithospheric mantle density heterogeneities to build a more reliable GPE model. The consecutive series involve basal traction from the convective mantle (series A, C) and the rheological heterogeneity of the TAP via variations in its effective elastic thickness (series B, C). The model quality reflects the increase in complexity between series with an improving match to observed stress regimes and directions. The most complex model (series D) also accounts for the bending stresses in the elastic lithosphere and achieves a remarkably good fit to observations. All of our experiments were based on the iteration of controlling parameters in order to achieve the best fit between modelled and observed stresses, always considering physically feasible values. This gives us confidence that our methodology appropriately models the stress pattern of Africa, and that it may be further applied to other plates on Earth. Our modelling approach allows us to quantify several important features controlling the lithospheric stress pattern. Even though the initial oversimplified model does not fit the observations satisfactorily, it shows how ridge push may create significant compressive stresses in the lithosphere. More complex models show the importance of the density structure of the lithosphere, specifically in the subcrustal lithosphere. The stress regime within the TAP mainly results from a global balance of masses and mass moments between continental and oceanic parts of the plate. The orientation of stresses, in turn, is influenced more by local features expressed by topographic and crustal density variations, whereas existent subcrustal density variations appear to be smoothed by the crust above. The models show that accounting separately for either basal tractions or rheological heterogeneities brings moderate improvement, but the combination of these two mechanisms results in a substantially better match between model and observations. The bending stresses caused by isostatical re-adjustment improve the model match, but they have to be analysed with caution because of their depth-dependent nature.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-09-03
    Description: The Red Sea and Gulf of Aden represent two young basins that formed between Africa and Arabia since the early Oligocene, floored by oceanic crust or by transitional and thinned continental crust. While in the easternmost Gulf of Aden, the rift–drift transition can be dated chron C6 (~20.1 Ma), here we show that in the Red Sea the first pulse of seafloor spreading occurred during chron C3n.2n (~4.6 Ma) around ~17.1°N (present-day coordinates) and propagated southwards from this location, separating the Danakil microplate from Arabia. It is also shown that seafloor spreading between Arabia and Nubia started later, around chron 2A (~2.58 Ma), and propagated northwards. At present, there is no magnetic evidence for the existence of a linear spreading centre in the northern Red Sea at latitudes higher than ~24°N and in the southern Red Sea below ~14.8°N. The present-day plate kinematics of this region can be described with high accuracy by a network of five interacting plates (Nubia, Arabia, Somalia, Sinai and Danakil) and six triple junctions. For times older than anomaly 2A (~2.58 Ma) and up to anomaly 3, the absence of marine magnetic anomalies between Arabia and Nubia prevents a rigorous kinematic description of the five-plates system. However, there is strong evidence that the unique changes in plate motions during the last 5 Myr were a dramatic slowdown at chron C2 (~1.77 Ma) in the spreading or extension rates along the ridge and rift axes, thereby a good representation of the real plate motions can be obtained anyway by backward extension of the oldest Arabia–Nubia and Arabia–Danakil stage rotations determined on the basis of marine magnetic anomalies, respectively, C2–C2A and C2A–C3. The proposed kinematic reconstructions are accompanied by a geodynamic explanation for the genesis of large continent–continent fracture zones at the rift–drift transition and by an analysis of the strain associated with plate motions in Afar, northeastern Egypt and Sinai.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-09-07
    Description: On 2016 February 6 the South Taiwan earthquake ( M w 6.4) occurred in the Meinong District of Kaohsiung, southern Taiwan, at a depth of 17 km. It caused 117 fatalities and widespread damage to infrastructures, especially in the Tainan city. To clarify the generating mechanism of this damaging earthquake, we determined high-resolution 3-D images of P - and S -wave velocity ( V P , V S ) and Poisson's ratio ( ) in the epicentral area. We used 105 712 P - and 61 250 S -wave arrival times of 8279 local earthquakes (1.5 ≤ M ≤ 6.4) recorded at 41 seismic stations in South Taiwan during 2000–2011. In the upper crust (depth ≤ 10 km), the most remarkable feature is low- V P , low- V S and high- anomalies in areas with known active faults in the southwestern and easternmost parts of Taiwan. In contrast, high- V P , high- V S and low- anomalies become dominant in the lower crust. The hypocentre of the 2016 South Taiwan earthquake is located in a boundary zone where seismic velocity and Poisson's ratio change drastically in both the horizontal and vertical directions. Furthermore, the hypocentre is underlain by a vertically elongated high- anomaly at depths of 23–40 km, which may reflect ascending fluids from the upper (or uppermost) mantle. The low- V and high- anomalies in the upper crust coincide with areas of low heat flow, negative Bouguer gravity anomaly, and low magnetotelluric resistivity, which may reflect crustal fluids contained in the young fold-and-thrust belt. These results suggest that the 2016 South Taiwan earthquake was triggered by ascending fluids from dehydration of the subducting Eurasian slab, invading into active faults with a high loading rate.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-08-21
    Description: Determining thin layer thickness is very important for reservoir characterization and CO 2 quantification. Given its high time–frequency resolution and robustness, the complex spectral decomposition method was applied on time-lapse 3-D seismic data from the Ketzin pilot site for CO 2 storage to evaluate the frequency-dependent characteristics of thin layers at the injection level. Higher temporal resolution and more stratigraphic details are seen in the all-frequency and monochromatic reflectivity amplitude sections obtained by complex spectral decomposition compared to the stacked sections. The mapped geologic discontinuities within the reservoir are consistent with the preferred orientation of CO 2 propagation. Tuning frequency mapping shows the thicknesses of the reservoir sandstone and gaseous CO 2 is consistent with the measured thickness of the sandstone unit from well logging. An attempt to discriminate between pressure effects and CO 2 saturation using the extracted tuning frequency indicates that CO 2 saturation is the main contributor to the amplitude anomaly at the Ketzin site. On the basis of determined thickness of gaseous CO 2 in the reservoir, quantitative analysis of the amount of CO 2 was performed and shows a discrepancy between the injected and calculated CO 2 mass. This may be explained by several uncertainties, like structural reservoir heterogeneity, a limited understanding of the complex subsurface conditions, error of determined tuning frequency, the presence of ambient noise and ongoing CO 2 dissolution.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-06-25
    Description: Comprehensive analytical solutions to 3-D axisymmetric problems for static response of multilayered thermoelastic media subjected to surface loads and containing sources are presented in this study. The solution strategy employs Laplace and Hankel transforms to the field variables. The problem is formulated in cylindrical coordinate system and in this coordinate system vector surface harmonics and generalized propagator matrix are introduced to find the solution for the problem for the behaviour of thermoelastic multilayered media subject to surface loads and containing heat sources. A high-order adaptive Gaussian quadrature method with continued fraction expansions is employed to approximate the integral solutions expressed in terms of semi-infinite Hankel-type integrals. It is the first time to apply the proposed solution method to investigate the behaviour of repository for heat-emitting high-level nuclear waste (HLW) in a geological formation where the HLW can be regarded as a decaying with time point heat source.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-02-03
    Description: Crystallization experiments in the dendritic regime have been carried out in hypergravity conditions (from 1 to 1300 g) from an ammonium chloride solution (NH 4 Cl and H 2 O). A commercial centrifuge was equipped with a slip ring so that electric power (needed for a Peltier device and a heating element), temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. Ultrasound measurements (2–6 MHz) were used to detect the position of the front of the mushy zone and to determine attenuation in the mush. Temperature measurements were used to control a Peltier element extracting heat from the bottom of the setup and to monitor the evolution of crystallization in the mush and in the liquid. A significant increase of solid fraction and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core. This has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity and attenuation of the inner core are strongly affected by melting.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-02-05
    Description: The coupling that exists between surface processes and deformation within both the shallow crust and the deeper mantle-lithosphere has stimulated the development of computational geodynamic models that incorporate a free surface boundary condition. We introduce a treatment of this boundary condition that is suitable for staggered grid, finite difference schemes employing a structured Eulerian mesh. Our interface capturing treatment discretizes the free surface boundary condition via an interface that conforms with the edges of control volumes (e.g. a ‘staircase’ representation) and requires only local stencil modifications to be performed. Comparisons with analytic solutions verify that the method is first-order accurate. Additional intermodel comparisons are performed between known reference models to further validate our free surface approximation. Lastly, we demonstrate the applicability of a multigrid solver to our free surface methodology and demonstrate that the local stencil modifications do not strongly influence the convergence of the iterative solver.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-01-30
    Description: We present a series of processes for understanding and analysing controlled-source electromagnetic (CSEM) responses for a conductive and permeable earth. To realize the CSEM response, a new 3-D CSEM forward modelling algorithm based on an edge finite element method for both electrically conductive and magnetically permeable heterogeneities is developed. The algorithm shows highly accurate results in validation tests against a semi-analytic solution for stratified earth and an integral form of the scattered field. We describe the vector behaviour of an anomalous magnetic field originating from a conductive and permeable anomaly when the loop sources are deployed over a conductive half-space. The CSEM response of the conductive and permeable anomaly is classified into three effects originating from: conductivity perturbations, permeability perturbations and the coupling of these two effects. The separated individual results and the corresponding integral equation form of the anomalous field help to better understand the physical behaviour. We confirm the characteristic features of the CSEM response from the conductive and permeable anomaly, for example, (1) the general dominance of the induction effect in the out-of-phase response accompanied by a non-negligible magnetization effect from the magnetic anomaly in a conductive half-space and (2) the dominance of near frequency-independent magnetization effects in the in-phase response at relatively low frequencies and change in ruling part of the in-phase response into the induction effect as the frequency increases. We also demonstrate the effect of coupling mode and show that its maximum contribution is limited to a few per cent level of other two modes, induction and magnetization mode, even when the heterogeneity of our model is strong. In our synthetic survey, using examples of land-based profiling surveys of low induction number and intermediate regime, we find that the effect of magnetization can be used as an indicator of the existence of magnetic material. One important point to note from this study is the importance of accurate cancelling-out or estimation of free-space responses, which can mask the magnetic responses to imaging the varying magnetic property.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-01-30
    Description: Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (~82°–83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (~35–36 km) and comparable velocity–depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ~24–30 km in the Eurekan fold and thrust belt (~79.7°–80.6°N) to ~16–20 km in the Hazen Stable Block (HSB; ~80.6°–81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (~48 km) at ~79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1–4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-02-20
    Description: Joint analysis of the seismic velocities and geoid, gravity and gravity gradients are used to constrain the viscosity profile within the mantle as well as the lateral density variations. Recent ESA's Gravity field and steady-state Ocean Circulation Explorer measurements of the second-order derivatives of the Earth's gravity potential give new possibilities to determine these mantle properties. Using a simple mantle model and seismic tomography results, we investigate how the gravitational potential, the three components of the gravity vector and the gravity gradients can bring information on the radial viscosity profile and on the mantle mass anomalies. We start with lateral density variations in the Earth's mantle based either on slab history or deduced from seismic tomography. The main uncertainties are: for the latter case, the relationship between seismic velocity and density—the so-called density/velocity scaling factor—and for the former case, the variation with depth of the density contrast between the cold slabs and the surrounding mantle. We perform a Monte Carlo search for the viscosity and the density/velocity scaling factor profiles within the mantle, which allows to fit the observed geoid, gravity and gradients of gravity. We compute the posterior probability distribution of the unknown parameters, and find that the gravity gradients improve the estimate of the scaling factor within the upper mantle, because of their sensitivity to the masses within the upper mantle, whereas the geoid and the gravity better constrain the scaling factor in the lower mantle. In the upper mantle, it is less than 0.02 in the upper part and about 0.08–0.14 in the lower part, and it is significantly larger for depths greater than 1200 km (about 0.32–0.34). In any case, the density/velocity scaling factor between 670 and 1150 km depth is not well constrained. We show that the viscosity of the upper part of the mantle is strongly correlated with the viscosity of the lower part of the mantle and that the viscosity profile is characterized by a decrease in the lower part of the upper mantle (about 10 20 –2  x  10 20 Pa s) and by an increase (about 10 23 –2  x  10 23 Pa s) at the top of the lower mantle (between 670 and 1150 km). The viscosity of the mantle below 1150 km depth is well estimated in our Monte Carlo search and is about 10 22 –4  x  10 22 Pa s.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-02-26
    Description: Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO 2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-02-26
    Description: A new plate motions model for the northwest Africa–North America Plate pair during the Oligocene and early Miocene is presented. The model is accompanied by a high-resolution isochron map for the central Atlantic region, resulting from a re-examination of 423 ship tracks from the NGDC data base for the area between the 15°20' FZ and the Azores triple junction. A new digital model of fracture zones for this region and a set of 309 magnetic profiles crossing the Oligocene to recent oceanic crust within the study area allowed to determine accurate finite reconstruction poles for the North America–northwest Africa conjugate plate pair between the early Miocene (Chron 6) and the early Oligocene (Chron 13). For times older than Chron 7 (~25 Ma), the finite reconstruction poles were calculated using a reliable data set coming exclusively from the region south of the Canary Islands FZ (~32°N), which allowed to test the rigidity of the northwest African oceanic lithosphere during the Oligocene–early Miocene phase of Atlas orogeny. A comparison of theoretical magnetic isochrons with observed magnetic lineations systematically shows that anomalously high spreading rates occurred in the area north of the Canary Islands FZ before Chron 7, thereby suggesting that the formation of the Atlas mountain, rather than being a localized intracontinental process, was logically linked to the central Atlantic spreading history. Thus, an independent Moroccan Plate could have existed during the Oligocene–early Miocene time interval, which included both the oceanic lithosphere north of the Canary Islands FZ and the northern Maghrebian areas of Morocco, Algeria and Tunisia. In this eventuality, the Atlas mountain belt should be reinterpreted as a giant flower structure associated with dextral transpression.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-02-26
    Description: Spectral induced polarization measurements are affected by temperature variations due to a variety of temperature-dependent parameters that control the complex electrical conductivity. Most important is the influence of the ion mobility, which increases with increasing temperature. It is responsible for the increase of the conductivity of the fluid in the pores with temperature and influences the electrical double layer on the mineral surface. This work is based on laboratory measurements of 13 sandstone samples from different sources with different geological and petrophysical characteristics. We measured the complex impedance in a frequency range from 0.01 to 100 Hz and a temperature range from 0 to 40 °C. The main observation is a decrease of the characteristic time (defined by the inverse of the frequency, at which the phase shift is maximum) with increasing temperature. The strength of this decrease differs from one sample to another. The temperature dependence of the phase shift magnitude cannot easily be generalized, as it depends on the particular sample. The experimental findings suggest that neglecting the influence of temperature on complex conductivity may lead to significant errors when estimating hydraulic conductivity from relaxation time. We also simulate the temperature dependence with a theoretical model of membrane polarization and review some of the model properties, with an emphasis on the temperature dependence of the parameters. The model reproduces several features characterizing the measured data, including the temperature dependence of the characteristic times. Computed tomography and microscope images of the pore structure of three samples also allow us to associate differences in the geometrical parameters used in the modelling with pore scale parameters of the actual samples.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-02-27
    Description: Knowledge about the pressure dependency of elastic and electrical properties is important for a variety of geophysical applications. We present a technique to invert for the stiff and compliant porosity from velocity measurements made as a function of differential pressure on saturated sandstones. A dual porosity concept is used for dry rock compressibility and a squirt model is employed for the pressure and frequency dependent elastic properties of the rocks when saturated. The total porosity obtained from inversion shows satisfactory agreement with experimental results. The electrical cementation factor was determined using the inverted porosity in combination with measured electrical conductivity. It was found that cementation factor increased exponentially with increasing differential pressure during isostatic loading. Elastic compressibility, electrical cementation factor and electrical conductivity of the saturated rocks correlate linearly with compliant porosity, and electrical cementation factor and electrical conductivity exhibit linear correlations with elastic compressibility of the saturated rocks under loading. The results show that the dual porosity concept is sufficient to explain the pressure dependency of elastic, electrical and joint elastic-electrical properties of saturated porous sandstones.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-02-27
    Description: A new plate motions model for the northwest Africa–North America Plate pair during the Oligocene and early Miocene is presented. The model is accompanied by a high-resolution isochron map for the central Atlantic region, resulting from a re-examination of 423 ship tracks from the NGDC data base for the area between the 15°20' FZ and the Azores triple junction. A new digital model of fracture zones for this region and a set of 309 magnetic profiles crossing the Oligocene to recent oceanic crust within the study area allowed to determine accurate finite reconstruction poles for the North America–northwest Africa conjugate plate pair between the early Miocene (Chron 6) and the early Oligocene (Chron 13). For times older than Chron 7 (~25 Ma), the finite reconstruction poles were calculated using a reliable data set coming exclusively from the region south of the Canary Islands FZ (~32°N), which allowed to test the rigidity of the northwest African oceanic lithosphere during the Oligocene–early Miocene phase of Atlas orogeny. A comparison of theoretical magnetic isochrons with observed magnetic lineations systematically shows that anomalously high spreading rates occurred in the area north of the Canary Islands FZ before Chron 7, thereby suggesting that the formation of the Atlas mountain, rather than being a localized intracontinental process, was logically linked to the central Atlantic spreading history. Thus, an independent Moroccan Plate could have existed during the Oligocene–early Miocene time interval, which included both the oceanic lithosphere north of the Canary Islands FZ and the northern Maghrebian areas of Morocco, Algeria and Tunisia. In this eventuality, the Atlas mountain belt should be reinterpreted as a giant flower structure associated with dextral transpression.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-03-02
    Description: Large-scale topography may be due to several causes, including (1) variations in crustal thickness and density structure, (2) oceanic lithosphere age differences, (3) subcrustal density variations in the continental lithosphere and (4) convective flow in the mantle beneath the lithosphere. The last contribution in particular may change with time and be responsible for continental inundations; distinguishing between these contributions is therefore important for linking Earth's history to its observed geological record. As a step towards this goal, this paper aims at such distinction for the present-day topography: the approach taken is deriving a ‘model’ topography due to contributions (3) and (4), along with a model geoid, using a geodynamic mantle flow model. Both lithosphere thickness and density anomalies beneath the lithosphere are inferred from seismic tomography. Density anomalies within the continental lithosphere are uncertain, because they are probably due to variations in composition and temperature, making a simple scaling from seismic to density anomalies inappropriate. Therefore, we test a number of different assumptions regarding these. As a reality check, model topography is compared, in terms of both correlation and amplitude ratio, to ‘residual’ topography, which follows from observed topography after subtracting contributions (1) and (2). The model geoid is compared to observations as well. Comparatively good agreement is found if there is either an excess density of 0.2 per cent in the lithosphere above 150 km depth, with anomalies below as inferred from tomography, or if the excess density is 0.4 per cent in the entire lithosphere. Further, a good fit is found for viscosity 10 20 Pa s in the asthenosphere, increasing to 10 23 Pa s in the lower mantle above D'. Results are quite dependent on which tomography models they are based on; for some recent ones, topography correlation is 0.6, many smaller scale features are matched, topography amplitude is less than 30 per cent too large, while geoid variance reduction exceeds 70 per cent—overall a considerable improvement compared to previous models. Correlation becomes less if smaller scale features (corresponding to spherical harmonic degrees 15 and higher), which are probably largely due to anomalies in the lithosphere, are also considered. Comparison of results with different viscosity structures, and a regional comparison of amplitude ratios, indicates that lateral viscosity variations can be quite strong, but only leading to moderate variations in model topography of a factor probably less than two.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-02-20
    Description: Maximizing vertical resolution is a key objective in seismic data processing. Early deconvolution and spectral balancing algorithms assumed that the seismic source wavelet was temporally invariant, or stationary. In practice, seismic scattering and attenuation give rise to non-stationary seismic source wavelets. To address this issue, most conventional time-varying deconvolution wavelet shaping and spectral modelling techniques using the stationary polynomial fitting assume the wavelet to be locally stationary within a small number of overlapping analysis windows while the fitting coefficients are invariant with all the frequencies. In this paper, we show an improvement obtained by modelling smoothly varying spectra of the seismic wavelet using non-stationary polynomial fitting in the time–frequency domain. We first decompose each seismic trace using a generalized S-transform that provides a good time–frequency distribution for the estimation of the time-varying wavelet spectra. We then model the slowly varying source wavelet spectrum at each time sample by a smooth low-order polynomial. Finally, we spectrally balance the modelled wavelet to flatten the seismic response, thereby increasing vertical resolution. We calibrate the algorithm on a simple synthetic and then apply it to a 3-D land survey acquired in western China, showing the value on both vertical slices through seismic amplitude and attribute time slices. Our new algorithm significantly improves the vertical resolution of the seismic signal, while not increasing the noise.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-02-26
    Description: Knowledge about the pressure dependency of elastic and electrical properties is important for a variety of geophysical applications. We present a technique to invert for the stiff and compliant porosity from velocity measurements made as a function of differential pressure on saturated sandstones. A dual porosity concept is used for dry rock compressibility and a squirt model is employed for the pressure and frequency dependent elastic properties of the rocks when saturated. The total porosity obtained from inversion shows satisfactory agreement with experimental results. The electrical cementation factor was determined using the inverted porosity in combination with measured electrical conductivity. It was found that cementation factor increased exponentially with increasing differential pressure during isostatic loading. Elastic compressibility, electrical cementation factor and electrical conductivity of the saturated rocks correlate linearly with compliant porosity, and electrical cementation factor and electrical conductivity exhibit linear correlations with elastic compressibility of the saturated rocks under loading. The results show that the dual porosity concept is sufficient to explain the pressure dependency of elastic, electrical and joint elastic-electrical properties of saturated porous sandstones.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-03-03
    Description: Oblique convergence across Tibet leads to slip partitioning with the coexistence of strike-slip, normal and thrust motion on major fault systems. A key point is to understand and model how faults interact and accumulate strain at depth. Here, we extract ground deformation across the Haiyuan Fault restraining bend, at the northeastern boundary of the Tibetan plateau, from Envisat radar data spanning the 2001–2011 period. We show that the complexity of the surface displacement field can be explained by the partitioning of a uniform deep-seated convergence. Mountains and sand dunes in the study area make the radar data processing challenging and require the latest developments in processing procedures for Synthetic Aperture Radar interferometry. The processing strategy is based on a small baseline approach. Before unwrapping, we correct for atmospheric phase delays from global atmospheric models and digital elevation model errors. A series of filtering steps is applied to improve the signal-to-noise ratio across high ranges of the Tibetan plateau and the phase unwrapping capability across the fault, required for reliable estimate of fault movement. We then jointly invert our InSAR time-series together with published GPS displacements to test a proposed long-term slip-partitioning model between the Haiyuan and Gulang left-lateral Faults and the Qilian Shan thrusts. We explore the geometry of the fault system at depth and associated slip rates using a Bayesian approach and test the consistency of present-day geodetic surface displacements with a long-term tectonic model. We determine a uniform convergence rate of 10 [8.6–11.5] mm yr –1 with an N89 [81–97]°E across the whole fault system, with a variable partitioning west and east of a major extensional fault-jog (the Tianzhu pull-apart basin). Our 2-D model of two profiles perpendicular to the fault system gives a quantitative understanding of how crustal deformation is accommodated by the various branches of this thrust/strike-slip fault system and demonstrates how the geometry of the Haiyuan fault system controls the partitioning of the deep secular motion.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-03-03
    Description: In order to perform gas exploration and determine the distribution pattern of gas in the Yanchang Oil Field in the eastern part of the North Shaanxi Slope, Ordos Basin, China, gravity and magnetic survey data were systemically collated, processed and interpreted in combination with the drilling data and recent seismic data. The genesis of gravity and magnetic anomalies and the relationship between the characteristics of the gravity and magnetic fields and known gas distribution were explored in order to predict the favourable exploration targets for gas. Gravity anomalies resulted both from the lateral variation in density of the basement rock and lateral lithologic transformation in the sedimentary cover. The regional magnetic anomalies were mainly caused by the basement metamorphic rocks and the residual magnetic anomalies may reflect the amount and general location of the volcanic materials in the overlying strata. The residual gravity and magnetic anomalies generated by high-density sandstone and high content of volcanics in the gas reservoir of the upper Paleozoic distorted and deformed the anomaly curves when they were stacked onto the primary background anomaly. The gas wells were generally found to be located in the anomaly gradient zones, or the distorted part of contour lines, and the flanks of high and low anomalies, or the transitional zones between anomaly highs and lows. The characteristics of gravity and magnetic fields provide significant information that can be used for guidance when exploring the distribution of gas. Based on these characteristics, five favourable areas for gas exploration were identified; these are quasi-equally spaced like a strip extending from the southeast to the northwest.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-03-03
    Description: In this paper, we study stability of the rate, state and temperature friction (RSTF) model. The Segall and Rice approach is used to model heat transfer at the sliding interface with its surroundings. The effect of pore pressure is not considered in the model to avoid the complex expression for critical stiffness. Linear stability analysis of the spring-mass sliding system is carried out with the ageing law under the quasistatic conditions in order to determine the critical stiffness above which sliding behaviour changes from unstable to stable or vice versa. Our numerical simulations establish that critical stiffness of the heated surface may increase or decrease from corresponding to the critical stiffness of the unheated surface depending on the relative values of two contradictory parameters related with velocity effect and temperature effect. Parametric studies are also carried out to understand shear velocity and temperature of the sliding surface dependence of steady friction. The RSTF model is also used to study the gravity induced failure of a creeping rock slope and the results are justified.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-02-27
    Description: Spectral induced polarization measurements are affected by temperature variations due to a variety of temperature-dependent parameters that control the complex electrical conductivity. Most important is the influence of the ion mobility, which increases with increasing temperature. It is responsible for the increase of the conductivity of the fluid in the pores with temperature and influences the electrical double layer on the mineral surface. This work is based on laboratory measurements of 13 sandstone samples from different sources with different geological and petrophysical characteristics. We measured the complex impedance in a frequency range from 0.01 to 100 Hz and a temperature range from 0 to 40 °C. The main observation is a decrease of the characteristic time (defined by the inverse of the frequency, at which the phase shift is maximum) with increasing temperature. The strength of this decrease differs from one sample to another. The temperature dependence of the phase shift magnitude cannot easily be generalized, as it depends on the particular sample. The experimental findings suggest that neglecting the influence of temperature on complex conductivity may lead to significant errors when estimating hydraulic conductivity from relaxation time. We also simulate the temperature dependence with a theoretical model of membrane polarization and review some of the model properties, with an emphasis on the temperature dependence of the parameters. The model reproduces several features characterizing the measured data, including the temperature dependence of the characteristic times. Computed tomography and microscope images of the pore structure of three samples also allow us to associate differences in the geometrical parameters used in the modelling with pore scale parameters of the actual samples.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-03-03
    Description: The streaming potential phenomenon is produced by the flow of an electrolyte in a porous medium and is used for geophysical prospecting. It is quantified through an electrokinetic (EK) coefficient. The dependence of the EK coefficient on the conductivity of the electrolyte is described by the Helmholtz–Smoluchowski (HS) equation. This equation provides successful forecasts of the EK coefficient in the standard range of concentration. However, experimental measurements show deviations to this equation at extreme low and extreme high salinities. The aim of this study is to model the EK coefficient using Lattice Boltzmann simulations in a 2-D capillary channel, with a view to understanding these deviations. The effect of the constitutive parameters of the HS equation such as the permittivity and the viscosity is discussed. The validity of the HS equation using strong potentials is assessed. Finally, a model of bulk fluid conductivity is derived. This model allows to take into account the change of local ionic distribution in the vicinity of the mineral. It appears to have a significant impact on the derivation of potentials at low salinities and in the presence of polyvalent counterions.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-02-27
    Description: Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO 2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-02-08
    Description: The Siple Coast region of Antarctica contains a number of fast-flowing ice streams, which control the dynamics and mass balance of the region. These ice streams are known to undergo stagnation and reactivation cycles, which lead to ice thickness changes that may be sufficient to excite a viscous solid Earth response (glacial isostatic adjustment; GIA). This study aims to quantify Siple Coast ice thickness changes during the last 2000 yr in order to determine the degree to which they might contribute to GIA and associated present-day bedrock uplift rates. This is important because accurate modelling of GIA is necessary to determine the rate of present-day ice-mass change from satellite gravimetry. Recently-published reconstructions of ice-stream variability were used to create a suite of kinematic models for the stagnation-related thickening of Kamb Ice Stream since ~1850 AD, and a GIA model was used to predict present-day deformation rates in response to this thickening. A number of longer-term loading scenarios, which include the stagnation and reactivation of ice streams across the Siple Coast over the past 2000 yr, were also constructed, and used to investigate the longer term GIA signal in the region. Uplift rates for each of the ice loading histories, based on a range of earth models, were compared with regional GPS-observed uplift rates and an empirical GIA estimate. We estimate Kamb Ice Stream to have thickened by 70–130 m since stagnation ~165 years ago. Modelled present-day vertical motion in response to this load increase peaks at –17 mm yr –1 (i.e. 17 mm yr –1 subsidence) for the weakest earth models tested here. Comparison of the solid Earth response to ice load changes throughout the last glacial cycle, including ice stream stagnation and reactivation across the Siple Coast during the last 2000 yr, with an empirical GIA estimate suggests that the upper mantle viscosity of the region is greater than 1 x 10 20 Pa s. When upper mantle viscosity values of 1 x 10 20  Pa s or smaller are combined with our suite of ice-load scenarios we predict uplift rates across Siple Coast that are at least 4 mm yr –1 smaller than those predicted by the empirical GIA estimate. GPS data are unable to further constrain model parameters due to the distance of the GPS sites from the study area. Our results demonstrate that Late Holocene ice load changes related to the stagnation and reactivation of ice streams on the Siple Coast may play a dominant role in defining the present-day uplift signal. However, both the detailed Earth structure and deglacial history of the region need to be better constrained in order to reduce uncertainties associated with the GIA signal of this region.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-05-14
    Description: We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-05-26
    Description: The Quaternary Añavieja-Dévanos tufa system is located in the northern sector of the Iberian Chain. It has been previously tackled by means sedimentological studies focused on the available outcrops and some boreholes. They have permitted the proposal of a sedimentary scenario that fits with a pool-barrage fluvial tufa model. However a better knowledge of the characteristics and internal distribution of the usually non-outcropping pool deposits as well as of its relationship with barrage deposits has not been evaluated in detail yet. Palaeoenvironmental studies on tufas are usually biased because tufas are commonly delicate facies exposed to intense erosion during water level fall stages; for this reason outcrops are usually scarce and very often coincide with the most cemented barrage deposits. In order to analyse the internal characteristics of the tufa deposits under study, but also the lateral correlation among different facies, ground penetrating radar (GPR) has been employed both for the evaluation of its applicability in such kind of environments and to improve, if possible, the sedimentary model using geophysical data in sectors without outcrops. A GPR survey including different antennas ranging from 50 to 500 MHz along different sectors and its comparison with natural outcrops has been carried out. GPR results have permitted to deduce clear differences between pool and barrage deposits and to recognise its internal structure and geometrical relationships. The survey also permitted an approach to different scales of heterogeneities in the radarfacies evaluation by using distinct antennas and therefore, reaching different resolutions and penetrations. The resulting integration from different antennas allows three different attenuant and eight reflective radarfacies to be defined permitting a better approach to the real extension of the pool areas. These results have permitted to decipher the horizontal and vertical facies changes and the identification of a scarcer development of pool deposits than expected in the studied system.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-03-24
    Description: Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-04-29
    Description: The thickness and equivalent global sea level contribution of an improved model of the central and northern Laurentide Ice Sheet is constrained by 24 relative sea level histories and 18 present-day GPS-measured vertical land motion rates. The final model, termed Laur16, is derived from the ICE-5G model by holding the timing history constant and iteratively adjusting the thickness history, in four regions of northern Canada. In the final model, the last glacial maximum (LGM) thickness of the Laurentide Ice Sheet west of Hudson Bay was ~3.4–3.6 km. Conversely, east of Hudson Bay, peak ice thicknesses reached ~4 km. The ice model thicknesses inferred for these two regions represent, respectively, a ~30 per cent decrease and an average ~20–25 per cent increase to the load thickness relative to the ICE-5G reconstruction, which is generally consistent with other recent studies that have focussed on Laurentide Ice Sheet history. The final model also features peak ice thicknesses of 1.2–1.3 km in the Baffin Island region, a modest reduction relative to ICE-5G and unchanged thicknesses for a region in the central Canadian Arctic Archipelago west of Baffin Island. Vertical land motion predictions of the final model fit observed crustal uplift rates well, after an adjustment is made for the elastic crustal response to present-day ice mass changes of regional ice cover. The new Laur16 model provides more than a factor of two improvement of the fit to the RSL data ( 2 measure of misfit) and a factor of nine improvement to the fit of the GPS data (mean squared error measure of fit), compared to the ICE-5G starting model. Laur16 also fits the regional RSL data better by a factor of two and gives a slightly better fit to GPS uplift rates than the recent ICE-6G model. The volume history of the Laur16 reconstruction corresponds to an up to 8 m reduction in global sea level equivalent compared to ICE-5G at LGM.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-05-23
    Description: The 2011 October 23 M W 7.1 Van earthquake in eastern Turkey caused ~600 deaths and caused widespread damage and economic loss. The seismogenic rupture was restricted to 10–25 km in depth, but aseismic surface creep, coincident with outcrop fault exposures, was observed in the hours to months after the earthquake. We combine observations from radar interferometry, seismology, geomorphology and Quaternary dating to investigate the geological slip rate and seismotectonic context of the Van earthquake, and assess the implications for continuing seismic hazard in the region. Transient post-seismic slip on the upper Van fault started immediately following the earthquake, and decayed over a period of weeks; it may not fully account for our long-term surface slip-rate estimate of ≥0.5 mm yr –1 . Post-seismic slip on the Bostanici splay fault initiated several days to weeks after the main shock, and we infer that it may have followed the M W  5.9 aftershock on the 9th November. The Van earthquake shows that updip segmentation can be important in arresting seismic ruptures on dip-slip faults. Two large, shallow aftershocks show that the upper 10 km of crust can sustain significant earthquakes, and significant slip is observed to have reached the surface in the late Quaternary, so there may be a continuing seismic hazard from the upper Van fault and the associated splay. The wavelength of folding in the hanging wall of the Van fault is dominated by the structure in the upper 10 km of the crust, masking the effect of deeper seismogenic structures. Thus, models of subsurface faulting based solely on surface folding and faulting in regions of reverse faulting may underestimate the full depth extent of seismogenic structures in the region. In measuring the cumulative post-seismic offsets to anthropogenic structures, we show that Structure-from-Motion can be rapidly deployed to create snapshots of post-seismic displacement. We also demonstrate the utility of declassified Corona mission imagery (1960s–1970s) for geomorphic mapping in areas where recent urbanization has concealed the geomorphic markers.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-03-14
    Description: An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency–slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ~150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn–air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-03-18
    Description: Within a slab experiencing present-day lateral break-off, a particular type of earthquakes is expected to cluster at the detachment horizon tip: namely, events generated by reverse faulting, with the approximately horizontal compression involved acting along the strike of the slab. Such a cluster of moderate magnitude earthquakes (4.7 ≤  m b ≤ 5.0) was identified in this study at the 160–175 km depth range of the Vrancea seismogenic body, in the Southeast Carpathians mountains collision environment. The corresponding cluster epicentres were systematically positioned at the boundary between a region being subject ( cf. published GPS records), to present-day upward movements, and another one that underwent present-day subsidence. Such an overall setting seems to suggest that a lateral break-off is currently developing at the indicated depth within the Vrancea slab, leading to topographic uplift above the already detached slab section, and to enhanced subsidence above the section to which the gravitational slab pull was being transferred. In addition, by taking into account some systematic time correspondence which we documented between moderate magnitude events of the 160–175 km depth cluster and the subsequent strong Vrancea shocks ( M w ≥ 6.9), it appears that the latter, although occurring at much shallower depths (roughly, in the 80–140 km range), were also controlled by the break-off progress.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-03-18
    Description: Bajada del Diablo is located in the Northern Patagonian Massif, Chubut, Argentina. The study area includes several circular structures found in Miocene olivine basalts of the Quiñelaf Eruptive Complex and in the Late Pliocene/Early Pleistocene Pampa Sastre conglomerates. An impact origin has been proposed for these circular structures. With the aim of further investigate the proposed impact origin, topographic, gravimetric, magnetic, resistivity, palaeomagnetic and electromagnetic surveys in two circular structures (‘8’ and ‘G’) located in Pampa Sastre conglomerates and in basalts of the Quiñelaf Eruptive Complex were carried out. The new geophysical results support the hypothesis of an impact origin. However, the confirmation of such an origin through the findings of shock metamorphism evidences and/or the recovery of meteorites remains elusive.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-03-18
    Description: We present an algorithm to recover the Bayesian posterior model probability density function of subsurface elastic parameters, as required by the full pressure field recorded at an ocean bottom cable due to an impulsive seismic source. Both the data noise and source wavelet are estimated by our algorithm, resulting in robust estimates of subsurface velocity and density. In contrast to purely gradient based approaches, our method avoids model regularization entirely and produces an ensemble of models that can be visualized and queried to provide meaningful information about the sensitivity of the data to the subsurface, and the level of resolution of model parameters. Our algorithm is trans-dimensional and performs model selection, sampling over a wide range of model parametrizations. We follow a frequency domain approach and derive the corresponding likelihood in the frequency domain. We present first a synthetic example of a reservoir at 2 km depth with minimal acoustic impedance contrast, which is difficult to study with conventional seismic amplitude versus offset changes. Finally, we apply our methodology to survey data collected over the Alba field in the North Sea, an area which is known to show very little lateral heterogeneity but nevertheless presents challenges for conventional post migration seismic amplitude versus offset analysis.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-03-12
    Description: A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources and receivers lie at the horizontal borehole level, thus only a local velocity model near the borehole is needed for imaging, and erroneous velocities in the shallow area have no effect on imaging around the borehole level. By joining the advantages of SI and Marchenko imaging, a macrovelocity model is no longer required and the proposed schemes use only single-component data. Furthermore, the schemes result in a set of virtual data that have fewer spurious events and internal multiples than previous virtual source redatuming methods. Two numerical examples are shown to illustrate the workflow and to demonstrate the benefits of the method. One is a synthetic model and the other is a realistic model of a field in the North Sea. In both tests, improved local images near the boreholes are obtained using the redatumed data without accurate velocities, because the redatumed data are close to the target.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-05-06
    Description: Estimating in situ stress based on hydraulic fracturing data typically depends on interpretation of the breakdown, secondary breakdown (‘reopening’) and shut-in pressure. While it has been recognized that the near-wellbore stress field should be taken into account and that the compressibility of the injection system and the viscous flow of the fluid can diminish the accuracy of stress estimates, these issues have not been well quantified. A coupled numerical model that includes the compressibility of the injection system and the flow of a viscous fluid in a plane-strain hydraulic fracture extending from a wellbore, in an impermeable rock, and in the presence of a non-isotropic in situ stress field provides a basic tool for estimating the order of the error associated with hydraulic fracturing stress measurements under non-ideal conditions. The main findings of this work are model-based guidelines on the values of relevant dimensionless parameter groups to ensure sufficient accuracy of stress estimates that use idealized models. When these guidelines cannot be met under field conditions, the model can be further applied to obtain first-order corrections that account for compressibility, viscosity and near-wellbore effects.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-05-06
    Description: We consider the problem of seismic velocity change estimation using ambient noise recordings. Motivated by Zhan et al. , we study how the velocity change estimation is affected by seasonal fluctuations in the noise sources. More precisely, we consider a numerical model and introduce spatio-temporal seasonal fluctuations in the noise sources. We show that indeed, as pointed out by Zhan et al. , the stretching method is affected by these fluctuations and produces misleading apparent velocity variations which reduce dramatically the signal to noise ratio of the method. We also show that these apparent velocity variations can be eliminated by an adequate normalization of the cross-correlation functions. Theoretically we expect our approach to work as long as the seasonal fluctuations in the noise sources are uniform, an assumption which holds for closely located seismic stations. We illustrate with numerical simulations in homogeneous and scattering media that the proposed normalization significantly improves the accuracy of the velocity change estimation. Similar behaviour is also observed with real data recorded in the Aegean volcanic arc. We study in particular the volcano of Santorini during the seismic unrest of 2011–2012 and observe a decrease in the velocity of seismic waves which is correlated with GPS measured elevation.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2016-05-15
    Description: The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal ( T 1 ) and transverse ( T 2 ) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-05-22
    Description: Static time-delay corrections are frequency independent and ignore velocity variations away from the assumed vertical ray path through the subsurface. There is therefore a clear potential for improvement if the finite frequency nature of wave propagation can be properly accounted for. Such a method is presented here based on the Born approximation, the assumption of surface consistency and the misfit of instantaneous phase. The concept of instantaneous phase lends itself very well for sweep-like signals, hence these are the focus of this study. Analytical sensitivity kernels are derived that accurately predict frequency-dependent phase shifts due to P -wave anomalies in the near surface. They are quick to compute and robust near the source and receivers. An additional correction is presented that re-introduces the nonlinear relation between model perturbation and phase delay, which becomes relevant for stronger velocity anomalies. The phase shift as function of frequency is a slowly varying signal, its computation therefore does not require fine sampling even for broad-band sweeps. The kernels reveal interesting features of the sensitivity of seismic arrivals to the near surface: small anomalies can have a relative large impact resulting from the medium field term that is dominant near the source and receivers. Furthermore, even simple velocity anomalies can produce a distinct frequency-dependent phase behaviour. Unlike statics, the predicted phase corrections are smooth in space. Verification with spectral element simulations shows an excellent match for the predicted phase shifts over the entire seismic frequency band. Applying the phase shift to the reference sweep corrects for wavelet distortion, making the technique akin to surface consistent deconvolution, even though no division in the spectral domain is involved. As long as multiple scattering is mild, surface consistent finite frequency phase corrections outperform traditional statics for moderately large velocity contrasts, also in the case of a free surface with topography. The kernels could also be used to update the velocity model, if one has knowledge of (wave propagation related only) surface consistent phase operators.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-05-22
    Description: The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-05-26
    Description: Noise interferometry is the process by which approximations to acoustic Green's functions, which describe sound propagation between two locations, are estimated by cross-correlating time series of ambient noise measured at those locations. Noise-interferometry-based approximations to Green's functions can be used as the basis for a variety of inversion algorithms, thereby providing a purely passive alternative to active-source ocean acoustic remote sensing. In this paper we give an overview of results from noise interferometry experiments conducted in the Florida Straits at 100 m depth in December 2012, and at 600 m depth in September/October 2013. Under good conditions for noise interferometry, estimates of cross-correlation functions are shown to allow one to perform advanced phase-coherent signal processing techniques to perform waveform inversions, estimate currents by exploiting non-reciprocity, perform time-reversal/back-propagation calculations and investigate modal dispersion using time-warping techniques. Conditions which are favourable for noise interferometry are identified and discussed.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-05-19
    Description: In this paper, we consider a new spectral finite volume method (FVM) for the elastic wave equations. Our new FVM is based on a piecewise constant approximation on a fine mesh and a high-order polynomial reconstruction on a coarser mesh. Our new method is constructed based on two existing techniques, the high-order FVM and the spectral FVM. In fact, we will construct a new method to take advantage of both methods. More precisely, our method has two distinctive features. The first one is that the local polynomial reconstructions are performed on the coarse triangles and the reconstruction matrices for all the coarse triangles are the same. This fact enhances the parallelization of our algorithm. We will present a parallel implementation of our method and show excellent efficiency results. The second one is that, by using a suitable number of finer triangles with a coarse triangle, we obtain an overdetermined reconstruction system, which can enhance the robustness of the reconstruction process. To derive our scheme, standard finite volume technique is applied to each fine triangle, and the high-order reconstructed polynomials, computed on coarse triangles, are used to compute numerical fluxes. We will present numerical results to show the performance of our method. Our method is presented for 2-D problems, but the same methodology can be applied to 3-D.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-05-06
    Description: At the heart of the full waveform inversion (FWI) implementation is wavefield extrapolation, and specifically its accuracy and cost. To obtain accurate, dispersion free wavefields, the extrapolation for modelling is often expensive. Combining an efficient extrapolation with a novel gradient preconditioning can render an FWI implementation that efficiently converges to an accurate model. We, specifically, recast the extrapolation part of the inversion in terms of its spectral components for both data and gradient calculation. This admits dispersion free wavefields even at large extrapolation time steps, which improves the efficiency of the inversion. An alternative spectral representation of the depth axis in terms of sine functions allows us to impose a free surface boundary condition, which reflects our medium boundaries more accurately. Using a newly derived perfectly matched layer formulation for this spectral implementation, we can define a finite model with absorbing boundaries. In order to reduce the nonlinearity in FWI, we propose a multiscale conditioning of the objective function through combining the different directional components of the gradient to optimally update the velocity. Through solving a simple optimization problem, it specifically admits the smoothest approximate update while guaranteeing its ascending direction. An application to the Marmousi model demonstrates the capability of the proposed approach and justifies our assertions with respect to cost and convergence.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-04-14
    Description: Spectral induced polarization (SIP) data are commonly analysed using phenomenological models. Among these models the Cole–Cole (CC) model is the most popular choice to describe the strength and frequency dependence of distinct polarization peaks in the data. More flexibility regarding the shape of the spectrum is provided by decomposition schemes. Here the spectral response is decomposed into individual responses of a chosen elementary relaxation model, mathematically acting as kernel in the involved integral, based on a broad range of relaxation times. A frequently used kernel function is the Debye model, but also the CC model with some other a priorly specified frequency dispersion (e.g. Warburg model) has been proposed as kernel in the decomposition. The different decomposition approaches in use, also including conductivity and resistivity formulations, pose the question to which degree the integral spectral parameters typically derived from the obtained relaxation time distribution are biased by the approach itself. Based on synthetic SIP data sampled from an ideal CC response, we here investigate how the two most important integral output parameters deviate from the corresponding CC input parameters. We find that the total chargeability may be underestimated by up to 80 per cent and the mean relaxation time may be off by up to three orders of magnitude relative to the original values, depending on the frequency dispersion of the analysed spectrum and the proximity of its peak to the frequency range limits considered in the decomposition. We conclude that a quantitative comparison of SIP parameters across different studies, or the adoption of parameter relationships from other studies, for example when transferring laboratory results to the field, is only possible on the basis of a consistent spectral analysis procedure. This is particularly important when comparing effective CC parameters with spectral parameters derived from decomposition results.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-04-14
    Description: Passive seismic experiment was carried out at the SW contact of the Dinarides and Pannonian basin to determine the crustal structure and velocity discontinuities. The aim of the experiment was to define the relationship between the Adriatic microplate and the Pannonian segment as a part of the European plate. Most of the temporary seismic stations were deployed in Croatia along the Alp07 profile—a part of the active-source ALP 2002 project. About 300-km-long profile stretches from Istra peninsula to the Drava river, in a WSW–ESE direction. Teleseismic events recorded on 13 temporary seismic stations along the profile were analysed by P -receiver function method. Two types of characteristic receiver functions (RF) have been identified, belonging to Dinaridic and Pannonian crusts as defined on the Alp07 profile, while in transitional zone there are both types. Three major crustal discontinuities can be identified for the Dinaridic type: sedimentary basement, intracrustal discontinuity and Mohorovičić discontinuity, whereas the Pannonian type revealed only two discontinuities. The intracrustal discontinuity was not observed in the Pannonian type, thus pointing to a single-layered crust in the Pannonian basin. Two interpretation methods were applied: forward modelling of the receiver functions and H – stacking method, and the results were compared with the active-source seismic data at deep refraction profile Alp07. The receiver function modelling has given reliable results of the Moho depths that are in accordance with the seismic refraction results at the end of the Alp07 profile, that is in the area of Pannonian crust characterized by simple crustal structure and low seismic velocities ( Vp between 5.9 and 6.2 km s –1 ). In the Dinarides and its peripheral parts, receiver function modelling regularly gives greater Moho depths, up to +15 per cent, due to more complex crustal structure. The depths of the Moho calculated by the H – stacking method vary within wide limits (±13 km), due to band limited data of short-period stations. The results at five stations have to be rejected because of huge deviations in comparison with all previous results, while at the other seven stations the Moho depths vary within ±15 per cent around the Moho discontinuity of the Alp07 profile.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-04-14
    Description: Viability for the development of an engineered geothermal system (EGS) in the oilsands region near Fort McMurray, Alberta, is investigated by studying the structure of the Precambrian basement rocks with magnetotellurics (MT). MT data were collected at 94 broad-band stations on two east–west profiles. Apparent resistivity and phase data showed little variation along each profile. The short period MT data detected a 1-D resistivity structure that could be identified as the shallow sedimentary basin underlain by crystalline basement rocks to a depth of 4–5 km. At lower frequencies a strong directional dependence, large phase splits, and regions of out-of-quadrant (OOQ) phase were detected. 2-D isotropic inversions of these data failed to produce a realistic resistivity model. A detailed dimensionality analysis found links between large phase tensor skews (~15°), azimuths, OOQ phases and tensor decomposition strike angles at periods greater than 1 s. Low magnitude induction vectors, as well as uniformity of phase splits and phase tensor character between the northern and southern profiles imply that a 3-D analysis is not necessary or appropriate. Therefore, 2-D anisotropic forward modelling was used to generate a resistivity model to interpret the MT data. The preferred model was based on geological observations of outcropping anisotropic mylonitic basement rocks of the Charles Lake shear zone, 150 km to the north, linked to the study area by aeromagnetic and core sample data. This model fits all four impedance tensor elements with an rms misfit of 2.82 on the southern profile, and 3.3 on the northern. The conductive phase causing the anisotropy is interpreted to be interconnected graphite films within the metamorphic basement rocks. Characterizing the anisotropy is important for understanding how artificial fractures, necessary for EGS development, would form. Features of MT data commonly interpreted to be 3-D (e.g. out of OOQ phase and large phase tensor skew) are shown to be interpretable with this 2-D anisotropic model.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-04-16
    Description: Megathrust earthquakes of magnitude close to 9 are followed by large-scale (thousands of km) and long-lasting (decades), significant crustal and mantle deformation. This deformation can be observed at the surface and quantified with GPS measurements. Here we report on deformation observed during the 5 yr time span after the 2010 M w 8.8 Maule Megathrust Earthquake (2010 February 27) over the whole South American continent. With the first 2 yr of those data, we use finite element modelling (FEM) to relate this deformation to slip on the plate interface and relaxation in the mantle, using a realistic layered Earth model and Burgers rheologies. Slip alone on the interface, even up to large depths, is unable to provide a satisfactory fit simultaneously to horizontal and vertical displacements. The horizontal deformation pattern requires relaxation both in the asthenosphere and in a low-viscosity channel along the deepest part of the plate interface and no additional low-viscosity wedge is required by the data. The vertical velocity pattern (intense and quick uplift over the Cordillera) is well fitted only when the channel extends deeper than 100 km. Additionally, viscoelastic relaxation alone cannot explain the characteristics and amplitude of displacements over the first 200 km from the trench and aseismic slip on the fault plane is needed. This aseismic slip on the interface generates stresses, which induce additional relaxation in the mantle. In the final model, all three components (relaxation due to the coseismic slip, aseismic slip on the fault plane and relaxation due to aseismic slip) are taken into account. Our best-fit model uses slip at shallow depths on the subduction interface decreasing as function of time and includes (i) an asthenosphere extending down to 200 km, with a steady-state Maxwell viscosity of 4.75 x 10 18 Pa s; and (ii) a low-viscosity channel along the plate interface extending from depths of 55–135 km with viscosities below 10 18 Pa s.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-04-16
    Description: We provide an updated present-day stress map for the Italian territory. Following the World Stress Map (WSM) Project guidelines, we list the different stress indicators, explaining the criteria used to select data. We discuss the data, which will also be included in the 2016 release of the WSM, highlighting the areas for which we have added stress information. Our map displays the minimum horizontal stress orientations inferred from crustal stress indicators down to 40 km depth using data of A–C quality, updated for earthquakes until December 2015. We have completely reviewed all data, and the data set now contains 855 entries, in contrast to the previous 715. The number of data with A–C quality of 630 corresponds to an increase of 26 per cent relative to the previous data set. In particular, the new data set contains the results of the analysis of borehole breakouts, critically reviewed data from earthquake focal mechanisms, data concerning active faults, formal inversions of focal mechanisms of seismic sequences or of restricted areas and one stress determination from overcoring. The new data set defines the stress field in areas not well covered by the previous data: the region north to the Po Plain and the central Adriatic sea, both characterized by a thrust- and strike-faulting regime, the northern Sicilian belt with a prevailing normal-faulting regime, and the Ionian sea with a strike-slip regime.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-04-20
    Description: Measurements of the velocity field associated with plumes rising through a viscous fluid are performed using stereoscopic Particle-Image Velocimetry in the Rayleigh number range 4.4 x 10 5 –6.4 x 10 5 . The experimental model is analogous to a mantle plume rising from the core–mantle boundary to the base of the lithosphere. The behaviour of the plume is studied throughout its life cycle, which is broken up into four stages; the Formation Stage, when the plume forms; the Rising Stage, when the plume rises through the fluid; the Spreading Stage, when the plume reaches the surface and spreads; and finally the Declining Stage, when the heat source has been removed and the plume weakens. The latter three stages are examined in terms of the Finite-Time Lyapunov Exponent fields and the advection of passive tracers throughout the flow. The temperature at the heater and near the fluid surface are measured using thermocouples to infer how the presence of a mantle plume would produce excess temperature near the lithosphere throughout the various stages of its life cycle. In all experiments, a time lag is observed between the removal of the heat source and the decline in the excess temperature near the surface, which is proportional to the rise time. A simple analytical model is presented, which suggests that under mantle conditions (i.e. negligible thermal diffusion), the relationship between the time lag and the rise time is robust and independent of the Rayleigh number; however, the constant of proportionality is closer to unity in the absence of diffusion. Once the heat source is removed, the excess temperature near the surface declines exponentially at a rate that is inversely proportional to the rise time. The implications of this result are discussed in terms of the decline in volcanism in the Louisville hotspot chain over the past 20 Ma. The rise velocity of material in the plume is examined; the rise velocity is found to vary significantly with the plume height in a manner that is inconsistent with many of the common semi-analytical models of thermal plumes in the literature. It is also argued that this height dependency will cause estimates of the rise velocity based on the decay series of uranium isotopes to significantly underestimate the true value.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-02-10
    Description: The Makran subduction zone is one of the last convergent margins to be investigated using space-based geodesy. While there is a lack of historical and modern instrumentation in the region, a sparse sampling of continuous and campaign measurements over the past decade has allowed us to make the first estimates of convergence rates. We combine GPS measurements from 20 stations located in Iran, Pakistan and Oman along with hypocentral locations from the International Seismological Centre to create a preliminary 3-D estimate of the geometry of the megathrust, along with a preliminary fault-coupling model for the Makran subduction zone. Using a convergence rate which is strongly constrained by measurements from the incoming Arabia plate along with the backslip method of Savage, we find the Makran subduction zone appears to be locked to a depth of at least 38 km and accumulating strain.We also find evidence for a segmentation of plate coupling, with a 300 km long section of reduced plate coupling. The range of acceptable locking depths from our modelling and the 900 km along-strike length for the megathrust, makes the Makran subduction zone capable of earthquakes up to M w  = 8.8. In addition, we find evidence for slow-slip-like transient deformation events on two GPS stations. These observations are suggestive of transient deformation events observed in Cascadia, Japan and elsewhere.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-02-12
    Description: Deep geological repositories, isolated from the geosphere by an engineered bentonite barrier, are currently considered the safest solution for high-level radioactive waste (HLRW) disposal. As the physical conditions and properties of the bentonite barrier are anticipated to change with time, seismic tomography was suggested as a viable technique to monitor the physical state and integrity of the barrier and to timely detect any unforeseen failure. To do so, the seismic monitoring system needs to be optimized, and this can be achieved by conducting numerical simulations of wave propagation in the repository geometry. Previous studies treated bentonite as an elastic medium, whereas recent experimental investigations indicate its pronounced viscoelastic behaviour. The aims of this contribution are (i) to numerically estimate the effective attenuation of bentonite as a function of temperature T and water content W c , so that synthetic data can accurately reproduce experimental traces and (ii) assess the feasibility and limitation of the HLRW repository monitoring by simulating the propagation of sonic waves in a realistic repository geometry. A finite difference method was utilized to simulate the wave propagation in experimental and repository setups. First, the input of the viscoelastic model was varied to achieve a match between experimental and numerical traces. The routine was repeated for several values of W c and T , so that quality factors Q p ( W c , T ) and Q s ( W c , T ) were obtained. Then, the full-scale monitoring procedure was simulated for six scenarios, representing the evolution of bentonite's physical state. The estimated Q p and Q s exhibited a minimum at W c = 20 per cent and higher sensitivity to W c , rather than T , suggesting that pronounced inelasticity of the clay has to be taken into account in geophysical modelling and analysis. The repository-model traces confirm that active seismic monitoring is, in principle, capable of depicting physical changes in the bentonite barrier. However, the locations of sources and receivers relative to the tunnel need to be optimized to achieve best sensitivity to the changes. It was also observed that first arrivals do not necessarily represent the most informative part of the signal; thus the time windows of the analysis need to be selected, accounting for the geometry of the acquisition system. This contribution should be considered as a next step towards the development of a numerical approach to aid in the design and optimization of a non-intrusive monitoring system in HLRW repositories.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-10-08
    Description: We present numerical models of mantle dynamics forced by plate velocities history in the last 450 Ma. The lower-mantle rheology and the thickness of a dense basal layer are systematically varied and several initial procedures are considered for each case. For some cases, the dependence on the mantle convection vigour is also examined. The resulting evolution of the CMB heat flux is analysed in terms of criteria to promote or inhibit reversals inferred from numerical dynamos. Most models present a rather dynamic lower mantle with the emergence of two thermochemical piles towards present-day. Only a small minority of models present two stationary piles over the last 450 Myr. At present-day, the composition field obtained in our models is found to correlate better with tomography than the temperature field. In addition, the temperature field immediately at the CMB (and thus the heat flux pattern) slightly differs from the average temperature field over the 100-km thick mantle layer above it. The evolution of the mean CMB heat flux or of the amplitude of heterogeneity seldom presents the expected correlation with the evolution of the palaeomagnetic reversal frequency suggesting these effects cannot explain the observations. In contrast, our analysis favours ‘inertial control’ on the geodynamo associated with polar cooling and in some cases break of Taylor columns in the outer core as sources of increased reversal frequency. Overall, the most likely candidates among our mantle dynamics models involve a viscosity increase in the mantle equal or smaller than 30: models with a discontinuous viscosity increase at the transition zone tend to agree better at present-day with observations of seismic tomography, but models with a gradual viscosity increase agree better with some of the criteria proposed to affect reversal frequency.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-10-08
    Description: Lateral viscosity variations (LVVs) in the mantle influence geodynamic processes and their surface expressions. With the observed long-wavelength geoid, free-air anomaly, gravity gradient in three directions and discrete, high-accuracy residual topography, we invert for depth- and temperature-dependent and tectonically regionalized mantle viscosity with a mantle flow model. The inversions suggest that long-wavelength gravitational and topographic signals are mainly controlled by the radial viscosity profile; the pre-Cambrian lithosphere viscosity is slightly (~ one order of magnitude) higher than that of oceanic and Phanerozoic lithosphere; plate margins are substantially weaker than plate interiors; and viscosity has only a weak apparent, dependence on temperature, suggesting either a balancing between factors or a smoothing of actual higher amplitude, but short wavelength, LVVs. The predicted large-scale lithospheric stress regime (compression or extension) is consistent with the world stress map (thrust or normal faulting). Both recent compiled high-accuracy residual topography and the predicted dynamic topography yield ~1 km amplitude long-wavelength dynamic topography, inconsistent with recent studies suggesting amplitudes of ~100 to ~500 m. Such studies use a constant, positive admittance (transfer function between topography and gravity), in contrast to the evidence which shows that the earth has a spatially and wavelength-dependent admittance, with large, negative admittances between ~4000 and ~10 4 km wavelengths.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2016-10-29
    Description: Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl 2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of –3.4 mV · m –1 . Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0–4.2) x 10 –3 m 2 · s –1 and were consistent with values measured in the pumping and monitoring wells. This approach will be of particular interest where monitoring wells are lacking for direct measurement, and SP on the surface can be used to quickly estimate hydraulic properties.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-10-29
    Description: We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridian equations, which is then solved by a 2-D spectral element method (SEM). Computational efficiency of such a hybrid method stems from lateral smoothness of 3-D Earth models and axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. We show novel benchmarks for global wave solutions in 3-D structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period ranging from 34 s down to 11 s. It turns out that our method has run up to two orders of magnitude faster than the 3-D SEM, featured by a computational advantage expanding with seismic frequency.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-10-26
    Description: We present a numerical algorithm for 3-D electromagnetic (EM) simulations in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3-D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For synthetic data corresponding to a 3-D model with a TTI anticlinal structure, a standard vertical transverse isotropic (VTI) inversion is not able to image a resistor, while for a 3-D model with a TTI synclinal structure it produces a false resistive anomaly. However, if the VTI forward solver used in the inversion is replaced by the proposed TTI solver with perfect knowledge of the strike and dip of the dipping structures, the resulting resistivity images become consistent with the true models.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-10-27
    Description: We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike-slip Dead Sea transform (DST) fault splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2-D inversion model is a deep, subvertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid- to low-grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the DSB and the high subsidence rate of basin sediments. 3-D inversion models confirm the existence of a subvertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3-D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3-D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3-D model furthermore contains an E–W elongated conductive structure to the northeast of the DSB. More MT data with better spatial coverage are required, however, to fully constrain the robustness of the above-mentioned off-profile features.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-09-09
    Description: Estimating how topography is maintained provides insights into the different factors responsible for surface deformations and their relative roles. Here, we develop a new and simple approach to assess the degree of isostatic compensation of continental topography at regional scale from GOCE gravity gradients. We calculate the ratio between the radial gradient observed by GOCE and that calculated from topography only. From analytical and statistical formulations, simple relationships between this ratio and the degree of compensation are obtained under the Airy–Heiskanen isostasy hypothesis. Then, a value of degree of compensation at each point of study area can be easily deduced. We apply our method to the Alaska-Canada Cordillera and validate our results by comparison with a standard isostatic gravity anomaly model and additional geophysical information for this area. Both our GOCE-based results and the isostatic anomaly show that Airy–Heiskanen isostasy prevails for the Yukon Plateau whereas additional mechanisms are required to support topography below the Northwest Territories Craton and the Yakutat collision zone.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-09-11
    Description: Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single ‘best-fit’ model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB code is provided to perform the appraisal analysis.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-09-14
    Description: Inference of the mantle viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-mantle viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-mantle viscosity model defined by viscosities of 670, D (670- D km depth) and D ,2891 ( D -2891 km depth) with D -values of 1191, 1691 and 2191 km. The upper-mantle rheological parameters for the two-layer lower-mantle viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced 2 ) of –(6.0–6.5)  x  10 –11 yr –1 provides two permissible viscosity solutions for the lower mantle, (7–20)  x  10 21 and (5–9)  x  10 22  Pa s, and the analyses with observational constraints of the 2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5–9)  x  10 22  Pa s for the lower mantle. However, the analyses for the 2 based on the two-layer lower-mantle viscosity model only require a viscosity layer higher than (5–10)  x  10 21  Pa s for a depth above the core–mantle boundary (CMB), in which the value of (5–10)  x  10 21  Pa s corresponds to the solution of (7–20)  x  10 21  Pa s for the simple three-layer one. Moreover, the analyses with the 2 and LGM sea level constraints for the two-layer lower-mantle viscosity model indicate two viscosity solutions: 670,1191  〉 3  x  10 21 and 1191,2891  ~ (5–10)  x  10 22  Pa s, and 670,1691  〉 10 22 and 1691,2891  ~ (5–10)  x  10 22  Pa s. The inferred upper-mantle viscosity for such solutions is (1–4)  x  10 20  Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5–10)  x  10 22  Pa s at least in the deep mantle, and suggest that the GIA-based lower-mantle viscosity structure should be treated carefully in discussing the mantle dynamics related to the viscosity jump at ~670 km depth. We also preliminarily put additional constraints on these viscosity solutions by examining typical relative sea level (RSL) changes used to infer the lower-mantle viscosity. The viscosity solution inferred from the far-field RSL changes in the Australian region is consistent with those for the 2 and LGM sea levels, and the analyses for RSL changes at Southport and Bermuda in the intermediate region for the North American ice sheets suggest the solution of 670, D  〉 10 22 , D ,2891  ~ (5–10)  x  10 22  Pa s ( D  = 1191 or 1691 km) and upper-mantle viscosity higher than 6  x  10 20  Pa s.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2016-08-25
    Description: We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: (1) Obtain a 3-D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. (2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. (3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (1) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps; (2) the horizontal location of a target body can be well recovered through inversion; (3) the overall geometry of a target body might be recovered but for ATEM data a depth weighting is required in the inversion; (4) we can recover estimates of intrinsic and that may be useful for distinguishing between two chargeable targets.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-10-16
    Description: Mid-crustal conductors are a common phenomenon in magnetotelluric studies. In the Andean Cordillera of southern Chile, they appear to concentrate along major fault zones. A high-resolution, broad-band magnetotelluric survey including 31 stations has been carried out along two profiles perpendicular to (1) the Liquiñe-Ofqui Fault Systems (LOFS) and (2) the Villarrica-Quetrupillán-Lanín volcanic lineament running parallel to the Mocha-Villarrica Fault Zone (MVFZ). The survey aimed at tracing one of the known conductors from mid-crustal depth to near-surface along these faults. Directionality and dimensionality were analysed using tensor decomposition. Phase tensors and induction arrows reveal two major geoelectric strike directions following the strike of LOFS and MVFZ. 2-D inversion shows low resistivity zones along both fault systems down to a depth of 〉10 km, where the brittle-ductile transition is expected. Along the LOFS, the two anomalies are linked to (1) Lake Caburgua, where the LOFS broadens to about 2 km of lateral extension and seems to represent a pull-apart structure, and (2) the intersection with the Villarrica-Quetrupillán-Lanín volcanic lineament, where seismic activity was observed during the latest eruption in March 2015. A connection of the mid-crustal conductor to the ESE-WNW-striking fault zones is indicated from the presented data.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...