ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Le Roux, V., & Liang, Y. Ophiolitic pyroxenites record boninite percolation in subduction zone mantle. Minerals, 9(9), (2019): 565, doi: 10.3390/min9090565.
    Description: The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of formation of these pyroxenites provides unique constraints on melt infiltration processes that may occur in active subduction zones. This study deciphers the processes of orthopyroxenite and clinopyroxenite formation in the Josephine ophiolite (USA), using new trace and major element analyses of pyroxenite minerals, closure temperatures, elemental profiles, diffusion modeling, and equilibrium melt calculations. We show that multiple melt percolation events are required to explain the variable chemistry of peridotite-hosted pyroxenite veins, consistent with previous observations in the xenolith record. We argue that the Josephine ophiolite evolved in conditions intermediate between back-arc and sub-arc. Clinopyroxenites formed at an early stage of ophiolite formation from percolation of high-Ca boninites. Several million years later, and shortly before exhumation, orthopyroxenites formed through remelting of the Josephine harzburgites through percolation of ultra-depleted low-Ca boninites. Thus, we support the hypothesis that multiple types of boninites can be created at different stages of arc formation and that ophiolitic pyroxenites uniquely record the timing of boninite percolation in subduction zone mantle.
    Description: This study was supported by National Science Foundation grants EAR-1220440 to V.L.R. and EAR-1624516 to Y.L. We thank the reviewers for their helpful suggestions, as well as Taylor Hough, Gretchen Swarr, Alberto Saal, Soumen Mallick, and Nilanjan Chatterjee for help with LA-ICP-MS and EPMA analyses, and Mark Kurz for help with sample collection.
    Keywords: Ophiolite ; Boninite ; Pyroxenite ; Josephine peridotite ; REE temperatures ; Diffusion ; Melt percolation ; Subduction zones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-06
    Description: In situ and remote-sensing measurements have been used to characterize the run-up phase and the phenomena that occurred during the August–November 2014 flank eruption at Stromboli. Data comprise videos recorded by the visible and infrared camera network, ground displacement recorded by the permanent-sited Ku-band, Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) device, seismic signals (band 0.02–10 Hz), and high-resolution Digital Elevation Models (DEMs) reconstructed based on Light Detection and Ranging (LiDAR) data and tri-stereo PLEIADES-1 imagery. This work highlights the importance of considering data from in situ sensors and remote-sensing platforms in monitoring active volcanoes. Comparison of data from live-cams, tremor amplitude, localization of Very-Long-Period (VLP) source and amplitude of explosion quakes, and ground displacements recorded by GBInSAR in the crater terrace provide information about the eruptive activity, nowcasting the shift in eruptive style of explosive to effusive. At the same time, the landslide activity during the run-up and onset phases could be forecasted and tracked using the integration of data from the GBInSAR and the seismic landslide index. Finally, the use of airborne and space-borne DEMs permitted the detection of topographic changes induced by the eruptive activity, allowing for the estimation of a total volume of 3.07 ± 0.37 × 106 m3 of the 2014 lava flow field emplaced on the steep Sciara del Fuoco slope.
    Description: This work has been financially supported by the “Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile” (Presidency of the Council of Ministers – Department of Civil Protection) within the framework of the InGrID2015-2016 and SAR.NET2017 projects (Scientific Responsibility: NC); this publication, however, does not reflect the position and the official policies of the Department. FDiT has been supported by a post-doc fellowship founded by the “Università degli Studi di Firenze – Ente Cassa di Risparmio di Firenze” (D.R. n. 127804 (1206) 2015; “Volcano Sentinel” project). This work has been financially supported by "Volcano Sentinel—extension” project (Call: “Settore ricerca scientifica e innovazione tecnologica”; founded by: Ente Cassa di Risparmio di Firenze. Scientific Responsibility: FeDiT).
    Description: Published
    Description: id 2035
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: landslides ; effusive activity ; Ground-Based InSAR ; infrared live cam ; seismic monitoring ; PLEIADES ; Digital Elevation Models ; optical sensors ; Stromboli volcano ; The 2014 effusive eruption ; Remote-sensing measurements
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...