ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pearlman, J., Bushnell, M., Coppola, L., Karstensen, J., Buttigieg, P. L., Pearlman, F., Simpsons, P., Barbier, M., Muller-Karger, F. E., Munoz-Mas, C., Pissierssens, P., Chandler, C., Hermes, J., Heslop, E., Jenkyns, R., Achterberg, E. P., Bensi, M., Bittig, H. C., Blandin, J., Bosch, J., Bourles, B., Bozzano, R., Buck, J. J. H., Burger, E. F., Cano, D., Cardin, V., Llorens, M. C., Cianca, A., Chen, H., Cusack, C., Delory, E., Garello, R., Giovanetti, G., Harscoat, V., Hartman, S., Heitsenrether, R., Jirka, S., Lara-Lopez, A., Lanteri, N., Leadbetter, A., Manzella, G., Maso, J., McCurdy, A., Moussat, E., Ntoumas, M., Pensieri, S., Petihakis, G., Pinardi, N., Pouliquen, S., Przeslawski, R., Roden, N. P., Silke, J., Tamburri, M. N., Tang, H., Tanhua, T., Telszewski, M., Testor, P., Thomas, J., Waldmann, C., & Whoriskey, F. Evolving and sustaining ocean best practices and standards for the next decade. Frontiers in Marine Science, 6, (2019):277, doi:10.3389/fmars.2019.00277.
    Description: The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet’s ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into “Ocean Best Practices.” While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come.
    Description: The Ocean Best Practices project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement no: 633211 (AtlantOS), no. 730960 (SeaDataCloud) and no: 654310 (ODIP). Funding was also received from the NSF OceanObs Research Coordination Network under NSF grant 1143683. The Best Practices Handbook for fixed observatories has been funded by the FixO3 project financed by the European Commission through the Seventh Framework Programme for Research, grant agreement no. 312463. The Harmful Algal Blooms Forecast Report was funded by the Interreg Atlantic Area Operational Programme Project PRIMROSE (Grant Agreement No. EAPA_182/2016), and the AtlantOS project (see above). PB acknowledges funding from the Helmholtz Programme Frontiers in Arctic Marine Monitoring (FRAM) conducted by the Alfred-Wegener-Institut. JM acknowledges fundng from the WeObserve project under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 776740). MTe acknowledges support from the US National Science Foundation grant OCE-1840868 to the Scientific Committee on Oceanic Research (SCOR, US) FM-K acknowledges support by NSF Grant 1728913 ‘OceanObS Research Coordination Network’. Funding was also provided by NASA grant NNX14AP62A ‘National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)’ funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803 in partnership between NOAA, BOEM, and NASA), and the U.S. Integrated Ocean Observing System (IOOS) Program Office.
    Keywords: Best practices ; Sustainability ; Interoperability ; Digital repository ; Peer review ; Ocean observing ; Ontologies ; Methodologies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-21
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tanhua, T., Pouliquen, S., Hausman, J., O'Brien, K., Bricher, P., de Bruin, T., Buck, J. J. H., Burger, E. F., Carval, T., Casey, K. S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D., Muelbert, J. H., Novellino, A., Pfeil, B., Pulsifer, P. L., Van de Putte, A., Robinson, E., Schaap, D., Smirnov, A., Smith, N., Snowden, D., Spears, T., Stall, S., Tacoma, M., Thijsse, P., Tronstad, S., Vandenberghe, T., Wengren, M., Wyborn, L., & Zhao, Z. Ocean FAIR data services. Frontiers in Marine Science, 6, (2019): 440, doi:10.3389/fmars.2019.00440.
    Description: Well-founded data management systems are of vital importance for ocean observing systems as they ensure that essential data are not only collected but also retained and made accessible for analysis and application by current and future users. Effective data management requires collaboration across activities including observations, metadata and data assembly, quality assurance and control (QA/QC), and data publication that enables local and interoperable discovery and access and secures archiving that guarantees long-term preservation. To achieve this, data should be findable, accessible, interoperable, and reusable (FAIR). Here, we outline how these principles apply to ocean data and illustrate them with a few examples. In recent decades, ocean data managers, in close collaboration with international organizations, have played an active role in the improvement of environmental data standardization, accessibility, and interoperability through different projects, enhancing access to observation data at all stages of the data life cycle and fostering the development of integrated services targeted to research, regulatory, and operational users. As ocean observing systems evolve and an increasing number of autonomous platforms and sensors are deployed, the volume and variety of data increase dramatically. For instance, there are more than 70 data catalogs that contain metadata records for the polar oceans, a situation that makes comprehensive data discovery beyond the capacity of most researchers. To better serve research, operational, and commercial users, more efficient turnaround of quality data in known formats and made available through Web services is necessary. In particular, automation of data workflows will be critical to reduce friction throughout the data value chain. Adhering to the FAIR principles with free, timely, and unrestricted access to ocean observation data is beneficial for the originators, has obvious benefits for users, and is an essential foundation for the development of new services made possible with big data technologies.
    Description: We thank the funding agencies and the data management projects that have made this work possible through dedicated funding for the data management activities and improvements. TT and JB acknowledge support from the EU Horizon 2020 project AtlantOS (grant agreement 633211). JM acknowledges support from the Integrated Oceanography and Multiple Uses of the Continental Shelf and the Adjacent Ocean Integrated Center of Oceanography (INCT-Mar COI, CNPq, Proc. 565062/2010-7). DS acknowledges support from the H2020 project SeaDataCloud (grant agreement 730960). SP acknowledges support from the EU Horizon 2020 project ENVRIplus (grant agreement 654182). AN acknowledges support from the EMODnet Physics (grant number EASME/EMFF/2016/1.3.1.2-Lot3/SI2.749411). HG acknowledges funding from the EU H2020 Ocean Data Interoperability Platform (ODIP) project (Grant No: 654310). JH acknowledges that funding came from the National Aeronautics and Space Agency as managed by the California Institute of Technology under task number 80NM0018F0848. AVdP acknowledges support from Belspo in the framework the EU Lifewatch ERIC (grant agreement FR/36/AN3). KO’B acknowledges that his publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2018-0175.
    Keywords: FAIR ; Ocean ; Data management ; Data services ; Ocean observing ; Standardization ; Interoperability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Newman, L., Heil, P., Trebilco, R., Katsumata, K., Constable, A., van Wijk, E., Assmann, K., Beja, J., Bricher, P., Colemans, R., Costa, D., Diggs, S., Farneti, R., Fawcett, S., Gille, S. T., Hendry, K. R., Henley, S., Hofmann, E., Maksym, T., MazIoff, M., Meijers, A., Meredith, M. M., Moreau, S., Ozsor, B., Robertson, R., Schloss, I., Schofield, O., Shi, J., Sikes, E., Smith, I. J., Swart, S., Wahlin, A., Williams, G., Williams, M. J. M., Herraiz-Borreguero, L., Kern, S., Liesers, J., Massom, R. A., Melbourne-Thomas, J., Miloslavich, P., & Spreen, G. Delivering sustained, coordinated, and integrated observations of the Southern Ocean for global impact. Frontiers in Marine Science, 6, (2019): 433, doi:10.3389/fmars.2019.00433.
    Description: The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths 〉2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.
    Description: PH was supported by the Australian Government’s Cooperative Research Centers Program through the Antarctica Climate and Ecosystems Cooperative Research Centre, and the International Space Science Institute’s team grant #406. This work contributes to the Australian Antarctica Science projects 4301 and 4390.
    Keywords: Southern Ocean ; observations ; modeling ; ocean–climate interactions ; ecosystem-based management ; long-term monitoring ; international coordination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Speich, S., Lee, T., Muller-Karger, F., Lorenzoni, L., Pascual, A., Jin, D., Delory, E., Reverdin, G., Siddorn, J., Lewis, M. R., Marba, N., Buttigieg, P. L., Chiba, S., Manley, J., Kabo-Bah, A. T., Desai, K., & Ackerman, A. Editorial: Oceanobs19: An ocean of opportunity. Frontiers in Marine Science, 6, (2019): 570, doi:10.3389/fmars.2019.00570.
    Description: The OceanObs conferences are held once every 10 years for the scientific, technical, and operational communities involved in the planning, implementation, and use of ocean observing systems. They serve to communicate progress, promote plans, and to define advances in ocean observing in response to societies' needs. Each conference provides a forum for the community to review the state of the ocean observing science and operations, and to define goals and plans to achieve over the next decade.
    Description: The organizers of the OceanObs'19 conference thank the authors that conceived and jointly crafted the Community White Papers for their tremendous efforts, extensive international collaborations, and community wisdom. The organizers also thank the hundreds of reviewers of the CWPs for their dedication, and the time invested in reviewing the papers. The organizers of the OceanObs'19 conference wish to thank the chief editor of the journal, Dr. Carlos Duarte, and the Frontiers Marine Science staff, for their professionalism and support in this process.
    Keywords: OceanObs'19 ; Ocean observing ; Innovation ; Information ; Integration ; Interoperability ; Governance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Swart, S., Gille, S. T., Delille, B., Josey, S., Mazloff, M., Newman, L., Thompson, A. F., Thomson, J., Ward, B., du Plessis, M. D., Kent, E. C., Girton, J., Gregor, L., Heil, P., Hyder, P., Pezzi, L. P., de Souza, R. B., Tamsitt, V., Weller, R. A., & Zappa, C. J. Constraining Southern Ocean air-sea-ice fluxes through enhanced observations. Frontiers in Marine Science, 6, (2019): 421, doi:10.3389/fmars.2019.00421.
    Description: Air-sea and air-sea-ice fluxes in the Southern Ocean play a critical role in global climate through their impact on the overturning circulation and oceanic heat and carbon uptake. The challenging conditions in the Southern Ocean have led to sparse spatial and temporal coverage of observations. This has led to a “knowledge gap” that increases uncertainty in atmosphere and ocean dynamics and boundary-layer thermodynamic processes, impeding improvements in weather and climate models. Improvements will require both process-based research to understand the mechanisms governing air-sea exchange and a significant expansion of the observing system. This will improve flux parameterizations and reduce uncertainty associated with bulk formulae and satellite observations. Improved estimates spanning the full Southern Ocean will need to take advantage of ships, surface moorings, and the growing capabilities of autonomous platforms with robust and miniaturized sensors. A key challenge is to identify observing system sampling requirements. This requires models, Observing System Simulation Experiments (OSSEs), and assessments of the specific spatial-temporal accuracy and resolution required for priority science and assessment of observational uncertainties of the mean state and direct flux measurements. Year-round, high-quality, quasi-continuous in situ flux measurements and observations of extreme events are needed to validate, improve and characterize uncertainties in blended reanalysis products and satellite data as well as to improve parameterizations. Building a robust observing system will require community consensus on observational methodologies, observational priorities, and effective strategies for data management and discovery.
    Description: SS was funded by a Wallenberg Academy Fellowship (WAF 2015.0186). EK was funded by the NERC ORCHESTRA Project (NE/N018095/1). LP was funded by the Advanced Studies in Oceanography of Medium and High Latitudes (CAPES 23038.004304/2014-28) and the Research Productivity Program (CNPq 304009/2016-4). BdS was a research associate at the F.R.S-FNRS. PeH was supported by the Australian Antarctic Science Projects 4301 and 4390, and the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre and the International Space Science Institute Project 406. SG and MM were funded by National Science Foundation awards OCE-1658001 and PLR-1425989. AT was supported by NASA (NNX15AG42G) and NSF (OCE-1756956).
    Keywords: Air-sea/air-sea-ice fluxes ; Southern Ocean ; Ocean-atmosphere interaction ; Climate ; Ocean-ice interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 1090, doi:10.3389/fmicb.2015.01090.
    Description: Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P. antarctica blooms awaits elucidation of their functional gene pool and of the geochemical activities they support. Here, we report on a metagenome (~160 million reads) analysis of the microbial community associated with a P. antarctica bloom event in the Amundsen Sea polynya (West Antarctica). Genomes of the most abundant Bacteroidetes and Proteobacteria populations have been reconstructed and a network analysis indicates a strong functional partitioning of these bacterial taxa. Three of them (SAR92, and members of the Oceanospirillaceae and Cryomorphaceae) are found in close association with P. antarctica colonies. Distinct features of their carbohydrate, nitrogen, sulfur and iron metabolisms may serve to support mutualistic relationships with P. antarctica. The SAR92 genome indicates a specialization in the degradation of fatty acids and dimethylsulfoniopropionate (compounds released by P. antarctica) into dimethyl sulfide, an aerosol precursor. The Oceanospirillaceae genome carries genes that may enhance algal physiology (cobalamin synthesis). Finally, the Cryomorphaceae genome is enriched in genes that function in cell or colony invasion. A novel pico-eukaryote, Micromonas related genome (19.6 Mb, ~94% completion) was also recovered. It contains the gene for an anti-freeze protein, which is lacking in Micromonas at lower latitudes. These draft genomes are representative for abundant microbial taxa across the Southern Ocean surface.
    Description: This work was performed with financial support from NSF Antarctic Sciences awards ANT-1142095 to AP.
    Keywords: Southern Ocean ; Amundsen Sea Polynya ; Phytoplankton bloom ; Phaeocystis ; Micromonas ; Microbial communities ; Metagenomics ; Genome reconstruction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...