ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • American Institute of Physics
  • 2015-2019  (4)
  • 1985-1989  (2)
  • 1960-1964  (1)
  • 1
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  The Journal of the Acoustical Society of America, 138 (3). pp. 1253-1267.
    Publication Date: 2020-05-11
    Description: Responses obtained in consonant perception experiments typically show a large variability across stimuli of the same phonetic identity. The present study investigated the influence of different potential sources of this response variability. It was distinguished between source-induced variability, referring to perceptual differences caused by acoustical differences in the speech tokens and/or the masking noise tokens, and receiver-related variability, referring to perceptual differences caused by within- and across-listener uncertainty. Consonant-vowel combinations consisting of 15 consonants followed by the vowel /i/ were spoken by two talkers and presented to eight normal-hearing listeners both in quiet and in white noise at six different signal-to-noise ratios. The obtained responses were analyzed with respect to the different sources of variability using a measure of the perceptual distance between responses. The speech-induced variability across and within talkers and the across-listener variability were substantial and of similar magnitude. The noise-induced variability, obtained with time-shifted realizations of the same random process, was smaller but significantly larger than the amount of within-listener variability, which represented the smallest effect. The results have implications for the design of consonant perception experiments and provide constraints for future models of consonant perception.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  The Journal of the Acoustical Society of America, 78 (6). pp. 2115-2121.
    Publication Date: 2020-05-11
    Description: The acoustic backscatter of eight well‐curated ferromanganese nodules has been measured in 1 °C seawater at frequencies from 45 to 167 kHz. The nodules have diameters from 37 to 121 mm and are thought to be representative of the Cu–Ni–Co‐rich nodules from the area around 14° 40’ N, 125° 25’ W (DOMES site C). They had been collected in box cores on the Echo 1 expedition and were kept refrigerated and water soaked in air‐tight plastic bags. Acoustic backscatter variations of over 10 dB were observed while the nodule was rotated 10° to 30° about one of its principal axes. The complicated fine structure, as well as the target strength, makes it clear that nodules cannot be modeled as simple spheres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  Journal of the Acoustical Society of America, 78 (4). pp. 1348-1355.
    Publication Date: 2020-07-16
    Description: Additional data from sonobuoys and the Deep Sea Drilling Project (DSDP) justify separating sound‐velocity‐depth functions and velocity gradients (in the first layer of soft marine sediments) into some geographic areas and sediment types. Based on sonobuoy and core measurements (where V is sound velocity in km/s, and h is depth in sediments in km), the following data are obtained: continental shelf basins off Sumatra and Java—V=1.484+0.710h−0.085h2; U. S. Atlantic continental rise—V=1.513+0.828h−0.138h2; deep‐sea terrigenous sediments—V=1.519+1.227h−0.473h2; and siliceous sediments of the Bering Sea— V=1.509+0.869h−0.267h2. Selected DSDP data (through leg 74) in similar areas yield: continental terrace silt–clays—V=1.505+0.712h; deep‐sea terrigenous sediments—V=1.510+1.019h; and deep‐sea siliceous sediments—V=1.533+0.761h. Computed velocity gradients from sonobuoy measurements are generally supported by the DSDP gradients. Only DSDP data give the following: hemipelagic sediments—V=1.501+1.151h; deep‐sea calcareous sediments—V=1.541+0.928h; and deep‐sea pelagic clay—V=1.526+1.046h. Where fast sediment accumulation occurs, there has not been enough time to reduce sediment pore spaces under overburden pressure; areas of slow accumulation may have relatively high sediment structural strength. Both cases have lower velocity gradients because higher porosities and consequent lower velocities persist to deeper depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  Journal of the Acoustical Society of America, 32 (6). pp. 641-644.
    Publication Date: 2020-07-16
    Description: Tables for the speed of sound in sea water are presented. These tables have been prepared from an empirical formula which was derived to fit measured sound‐speed data obtained over the temperature range −3°C to 30°C, the pressure range 1.033 kg/cm2 to 1000 kg/cm2, and the salinity range 33‰ to 37‰. The discrepancy of −3.0 m/sec found by Del Grosso at 1 atm., as compared to the tables of Kuwahara, is substantiated. In addition, the pressure coefficient of sound speed observed in the present work differs from that predicted by Kuwahara.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  Journal of the Acoustical Society of America, 140 (4). pp. 2695-2702.
    Publication Date: 2020-07-16
    Description: The Green's function (GF) for the scalar wave equation is numerically constructed by an advanced geometric ray-tracing method based on the eikonal approximation related to the semiclassical propagator. The underlying theory is first briefly introduced, and then it is applied to acoustics and implemented in a ray-tracing-type numerical simulation. The so constructed numerical method is systematically used to calculate the sound field in a rectangular (cuboid) room, yielding also the acoustic modes of the room. The simulated GF is rigorously compared to its analytic approximation. Good agreement is found, which proves the devised numerical approach potentially useful also for low frequency acoustic modeling, which is in practice not covered by geometrical methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-02
    Description: High-resolution 3D (HR3D) seismic data are important for hydrocarbon exploration of shallow reservoirs, site characterization, and geohazard assessments. The goal of this contribution is to identify and quantify the parameters to increase the resolution of HR3D seismic data to meter scale. The main acquisition parameters controlling the resolution of the collected data are the spectrum of the seismic source, source-receiver offset range, and trace density. An evolution to one-meter-scale resolution of 3D seismic will rely on combining a reproducible seismic source with high frequencies up to at least 600 Hz, a high uniform trace density of more than 4 million traces per square kilometer, and an offset range shorter than approximately 200 m. The resulting 3D seismic data volume will reach meter-scale resolution for water and target depths of less than 600 m. The proposed HR3D system will be suitable for 3D and 4D characterization of seabed properties and shallow stratigraphy, the identification of geohazards and hydrocarbon leakage, and monitoring the environmental impact of offshore activities. The P-Cable 3D system is an excellent starting point for achieving one-meter-scale resolution due to its flexible and tight meter-scale shot and receiver spacing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  Review of Scientific Instruments, 90 (12). p. 124504.
    Publication Date: 2021-01-08
    Description: Understanding mechanical interactions between hydrate and hosting sediments is critical for evaluating formation stability and associated environmental impacts of hydrate-bearing sediments during gas production. While core-scale studies of hydrate-bearing sediments are readily available and some explanations of observed results rely on pore-scale behavior of hydrate, actual pore-scale observations supporting the larger-scale phenomena are rarely available for hydrate-bearing sediments, especially with methane as guest molecules. The primary reasons for the scarcity include the challenge of developing tools for small-scale testing apparatus and pore-scale visualization capability. We present a testing assembly that combines pore-scale visualization and triaxial test capability of methane hydrate-bearing sediments. This testing assembly allows temperature regulation and independent control of four pressures: influent and effluent pore pressure, confining pressure, and axial pressure. Axial and lateral effective stresses can be applied independently to a 9.5 mm diameter and 19 mm long specimen while the pore pressure and temperature are controlled to maintain the stability of methane hydrate. The testing assembly also includes an X-ray transparent beryllium core holder so that 3D computed tomography scanning can be conducted during the triaxial loading. This testing assembly permits pore-scale exploration of hydrate-sediment interaction in addition to the traditional stress-strain relationship. Exemplary outcomes are presented to demonstrate applications of the testing assembly on geomechanical property estimations of methane-hydrate bearing sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...