ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (10)
  • RNA characterisation and manipulation  (10)
  • Oxford University Press  (10)
  • American Chemical Society (ACS)
  • Frontiers Media
  • PeerJ
  • 2015-2019  (10)
  • 1985-1989
  • 1980-1984
  • Biology  (10)
  • Nature of Science, Research, Systems of Higher Education, Museum Science
  • Education
Collection
  • Journals
  • Articles  (10)
Publisher
  • Oxford University Press  (10)
  • American Chemical Society (ACS)
  • Frontiers Media
  • PeerJ
Years
  • 2015-2019  (10)
  • 1985-1989
  • 1980-1984
  • 2010-2014  (13)
Year
Topic
  • Biology  (10)
  • Nature of Science, Research, Systems of Higher Education, Museum Science
  • Education
  • 1
    Publication Date: 2015-09-19
    Description: Telomerase is a reverse transcriptase that maintains telomeres on the ends of chromosomes, allowing rapidly dividing cells to proliferate while avoiding senescence and apoptosis. Understanding telomerase gene expression and splicing at the single cell level could yield insights into the roles of telomerase during normal cell growth as well as cancer development. Here we use droplet-based single cell culture followed by single cell or colony transcript abundance analysis to investigate the relationship between cell growth and transcript abundance of the telomerase genes encoding the RNA component (hTR) and protein component (hTERT) as well as hTERT splicing. Jurkat and K562 cells were examined under normal cell culture conditions and during exposure to curcumin, a natural compound with anti-carcinogenic and telomerase activity-reducing properties. Individual cells predominantly express single hTERT splice variants, with the α+/β– variant exhibiting significant transcript abundance bimodality that is sustained through cell division. Sub-lethal curcumin exposure results in reduced bimodality of all hTERT splice variants and significant upregulation of alpha splicing, suggesting a possible role in cellular stress response. The single cell culture and transcript abundance analysis method presented here provides the tools necessary for multiparameter single cell analysis which will be critical for understanding phenotypes of heterogeneous cell populations, disease cell populations and their drug response.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-29
    Description: Small RNAs, between 18nt and 30nt in length, are a diverse class of non-coding RNAs that mediate a range of cellular processes, from gene regulation to pathogen defense. They guide ribonucleoprotein complexes to their target nucleic acids by Watson–Crick base pairing. We report here that current techniques for small RNA detection and library generation are biased by formation of RNA duplexes. To address this problem, we established FDF-PAGE (fully-denaturing formaldehyde polyacrylamide gel electrophoresis) to prevent annealing of sRNAs to their complement. By applying FDF-PAGE, we provide evidence that both strands of viral small RNA are present in near equimolar ratios, indicating that the predominant precursor is a long double-stranded RNA. Comparing non-denaturing conditions to FDF-PAGE uncovered extensive sequestration of miRNAs in model organisms and allowed us to identify candidate small RNAs under the control of competing endogenous RNAs (ceRNAs). By revealing the full repertoire of small RNAs, we can begin to create a better understanding of small RNA mediated interactions.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-24
    Description: RNA sequencing (RNA-Seq) is a powerful tool for analyzing the identity of cellular RNAs but is often limited by the amount of material available for analysis. In spite of extensive efforts employing existing protocols, we observed that it was not possible to obtain useful sequencing libraries from nuclear RNA derived from cultured human cells after crosslinking and immunoprecipitation (CLIP). Here, we report a method for obtaining strand-specific small RNA libraries for RNA sequencing that requires picograms of RNA. We employ an intramolecular circularization step that increases the efficiency of library preparation and avoids the need for intermolecular ligations of adaptor sequences. Other key features include random priming for full-length cDNA synthesis and gel-free library purification. Using our method, we generated CLIP-Seq libraries from nuclear RNA that had been UV-crosslinked and immunoprecipitated with anti-Argonaute 2 (Ago2) antibody. Computational protocols were developed to enable analysis of raw sequencing data and we observe substantial differences between recognition by Ago2 of RNA species in the nucleus relative to the cytoplasm. This RNA self-circularization approach to RNA sequencing (RC-Seq) allows data to be obtained using small amounts of input RNA that cannot be sequenced by standard methods.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-03
    Description: N 6 -methyladenosine (m 6 A) is a prevalent RNA methylation modification involved in the regulation of degradation, subcellular localization, splicing and local conformation changes of RNA transcripts. High-throughput experiments have demonstrated that only a small fraction of the m 6 A consensus motifs in mammalian transcriptomes are modified. Therefore, accurate identification of RNA m 6 A sites becomes emergently important. For the above purpose, here a computational predictor of mammalian m 6 A site named SRAMP is established. To depict the sequence context around m 6 A sites, SRAMP combines three random forest classifiers that exploit the positional nucleotide sequence pattern, the K-nearest neighbor information and the position-independent nucleotide pair spectrum features, respectively. SRAMP uses either genomic sequences or cDNA sequences as its input. With either kind of input sequence, SRAMP achieves competitive performance in both cross-validation tests and rigorous independent benchmarking tests. Analyses of the informative features and overrepresented rules extracted from the random forest classifiers demonstrate that nucleotide usage preferences at the distal positions, in addition to those at the proximal positions, contribute to the classification. As a public prediction server, SRAMP is freely available at http://www.cuilab.cn/sramp/ .
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-24
    Description: The cyanobacterial hsp17 ribonucleicacid thermometer (RNAT) is one of the smallest naturally occurring RNAT. It forms a single hairpin with an internal 1 x 3-bulge separating the start codon in stem I from the ribosome binding site (RBS) in stem II. We investigated the temperature-dependent regulation of hsp17 by mapping individual base-pair stabilities from solvent exchange nuclear magnetic resonance (NMR) spectroscopy. The wild-type RNAT was found to be stabilized by two critical CG base pairs (C14-G27 and C13-G28). Replacing the internal 1 x 3 bulge by a stable CG base pair in hsp17 rep significantly increased the global stability and unfolding cooperativity as evidenced by circular dichroism spectroscopy. From the NMR analysis, remote stabilization and non-nearest neighbour effects exist at the base-pair level, in particular for nucleotide G28 (five nucleotides apart from the side of mutation). Individual base-pair stabilities are coupled to the stability of the entire thermometer within both the natural and the stabilized RNATs by enthalpy–entropy compensation presumably mediated by the hydration shell. At the melting point the Gibbs energies of the individual nucleobases are equalized suggesting a consecutive zipper-type unfolding mechanism of the RBS leading to a dimmer-like function of hsp17 and switch-like regulation behaviour of hsp17 rep . The data show how minor changes in the nucleotide sequence not only offset the melting temperature but also alter the mode of temperature sensing. The cyanobacterial thermosensor demonstrates the remarkable adjustment of natural RNATs to execute precise temperature control.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-08
    Description: Using random mutagenesis and high throughput screening by microfluidic-assisted In Vitro Compartmentalization, we report the isolation of an order of magnitude times brighter mutants of the light-up RNA aptamers Spinach that are far less salt-sensitive and with a much higher thermal stability than the parent molecule. Further engineering gave iSpinach, a molecule with folding and fluorescence properties surpassing those of all currently known aptamer based on the fluorogenic co-factor 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI). We illustrate the potential of iSpinach in a new sensitive and high throughput-compatible fluorogenic assay that measures co-transcriptionally the catalytic constant ( k cat ) of a model ribozyme.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-04
    Description: Site-directed RNA editing (SDRE) is a strategy to precisely alter genetic information within mRNAs. By linking the catalytic domain of the RNA editing enzyme ADAR to an antisense guide RNA, specific adenosines can be converted to inosines, biological mimics for guanosine. Previously, we showed that a genetically encoded iteration of SDRE could target adenosines expressed in human cells, but not efficiently. Here we developed a reporter assay to quantify editing, and used it to improve our strategy. By enhancing the linkage between ADAR's catalytic domain and the guide RNA, and by introducing a mutation in the catalytic domain, the efficiency of converting a U A G premature termination codon (PTC) to tryptophan (U G G) was improved from ~11 % to ~70 %. Other PTCs were edited, but less efficiently. Numerous off-target edits were identified in the targeted mRNA, but not in randomly selected endogenous messages. Off-target edits could be eliminated by reducing the amount of guide RNA with a reduction in on-target editing. The catalytic rate of SDRE was compared with those for human ADARs on various substrates and found to be within an order of magnitude of most. These data underscore the promise of site-directed RNA editing as a therapeutic or experimental tool.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-20
    Description: RNA 2'-O-methylation is one of the ubiquitous nucleotide modifications found in many RNA types from Bacteria, Archaea and Eukarya. RNAs bearing 2'-O-methylations show increased resistance to degradation and enhanced stability in helices. While the exact role of each 2'-O-Me residue remained elusive, the catalytic protein Fibrillarin (Nop1 in yeast) responsible for 2'-O-methylation in eukaryotes, is associated with human pathologies. Therefore, there is an urgent need to precisely map and quantify hundreds of 2'-O-Me residues in RNA using high-throughput technologies. Here, we develop a reliable protocol using alkaline fragmentation of total RNA coupled to a commonly used ligation approach, and Illumina sequencing. We describe a methodology to detect 2'-O-methylations with high sensitivity and reproducibility even with limited amount of starting material (1 ng of total RNA). The method provides a quantification of the 2'-O-methylation occupancy of a given site, allowing to detect relatively small changes (〉10%) in 2'-O-methylation profiles. Altogether this technique unlocks a technological barrier since it will be applicable for routine parallel treatment of biological and clinical samples to decipher the functions of 2'-O-methylations in pathologies.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-18
    Description: The substitution of 2'-fluoro for 2'-hydroxyl moieties in RNA substantially improves the stability of RNA. RNA stability is a major issue in RNA research and applications involving RNA. We report that the RNA polymerase from the marine cyanophage Syn5 has an intrinsic low discrimination against the incorporation of 2'-fluoro dNMPs during transcription elongation. The presence of both magnesium and manganese ions at high concentrations further reduce this discrimination without decreasing the efficiency of incorporation. We have constructed a Syn5 RNA polymerase in which tyrosine 564 is replaced with phenylalanine (Y564F) that further decreases the discrimination against 2'-fluoro-dNTPs during RNA synthesis. Sequence elements in DNA templates that affect the yield of RNA and incorporation of 2'-fluoro-dNMPs by Syn5 RNA polymerase have been identified.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-31
    Description: Recent studies have revealed significant roles of RNA structure in almost every step of RNA processing, including transcription, splicing, transport and translation. RNase footprint sequencing (RNase-seq) has emerged to dissect RNA structures at the genome scale. However, it remains challenging to analyze RNase-seq data because of the issues of signal sparsity, variability and correlations among various RNases. We present a probabilistic framework, joint Poisson-gamma mixture (JPGM), for integrative modeling of multiple RNase-seq profiles. Combining JPGM with hidden Markov model allows genome-wide inference of RNA structures. We apply the joint modeling approach for inferring base pairing states on simulated data sets and RNase-seq profiles of the double-strand specific RNase V1 and single-strand specific RNase S1 in yeast. We demonstrate that joint analysis of V1 and S1 profiles outputs interpretable RNA structure states, while approaches that analyze each profile separately do not. The joint modeling approach predicts the structure states of all nucleotides in 3196 transcripts of yeast without compromising accuracy, while the simple thresholding approach misses 43% of the nucleotides. Furthermore, the posterior probabilities outputted by our model are able to resolve the structural ambiguity of 300 000 nucleotides with overlapping V1 and S1 cleavage sites. Our model also generates RNA accessibilities, which are associated with three-dimensional conformations.
    Keywords: RNA characterisation and manipulation
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...