ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cultural Heritage  (2)
  • Springer Nature  (1)
  • © 2018 Copernicus GmbH  (1)
  • 2015-2019  (2)
  • 1995-1999
  • 1950-1954
  • 1
    Publication Date: 2019-09-18
    Description: This paper describes a high resolution multi-technique non invasive approach in which three different techniques (photogrammetric, terrestrial laser scanner and acoustic tomography) are integrated with petrographic data for a detailed characterization of rock samples. To study stone materials both outcropping and in depth, with appropriately prepared samples one can make as many measurements as necessary with different techniques. Moreover, some characterization analyses are destructive and there is a limit on the number of samples that can be sacrificed. The samples need to be carefully selected to ensure they are representative of the rock types under study and significant in different fields (e.g. analysis of the degradation of stone building materials, analysis of aquifer, study of natural reservoirs). As a result, analysis made by the above non invasive techniques integrated with petrographical data on the same materials becomes an indispensable source of data. For the characterization of non-invasive rock samples we started a computation of high resolution 3D models of two samples of a different nature, a comenditic pyroclastic rock and a Pietra Forte carbonate rock, using the terrestrial laser scanning (TLS) methodology and digital photogrammetry. Data were collected using a Leica HDS6200 TLS and a Nikon D-300 digital Reflex camera with the necessary conditions of the highest resolution modality, small incidence angles and a high dynamic range (HDR) in the case of digital images. The resulting clouds and images were processed by specific software using a multi-step procedure which starts with the data input and filtering with elimination of defective points, manual data editing, automatic filtering, raw and fine registration with an iterative closest point (ICP) algorithm in a bundle adjustment modality and successive aggregation of all clouds in high resolution 3D models. Finally, the resulting radiometric information available, such as reflectivity maps, high resolution (HR) photogrammetry textured models and patterns of geometrical residuals, were interpreted in order to locate and underline materials anomalies and differences in composition together with a comparison of reflectance and natural colour anomalies with the roughness of surface materials. Starting with the accurate 3D reconstruction from previous techniques, an acoustic tomography on each rock sample was carefully planned and carried out. Travel time of longitudinal elastic waves were measured along a large number of measurement paths between stations located on the perimeter of the investigated samples. Each measurement point was alternatively used as transmitter and receiver. Inversion techniques were used to obtain a map of the distribution of the longitudinal wave velocity across the sections, thanks to specific software exploiting appropriate reconstruction algorithms. Ultrasonic tomography proved an effective tool in detecting internal defects and heterogeneity of the samples, and led to their fine characterization in terms of elastic-mechanical properties. Finally, the integration of the above three geophysical non invasive techniques with petrographical data represents a powerful method for the definition of the heterogeneity of the rocks at a different scale and for calibrating in situ measurements.
    Description: Published
    Description: Vienna | Austria
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: Terrestrial laser scanner ; SfM Photogrammetry ; 3D ultrasonic tomography ; stone samples ; Terrestrial laser scanner ; SfM Photogrammetry ; 3D ultrasonic tomography ; stone samples ; Cultural Heritage ; Ancient Buildings
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Nature
    In:  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    Publication Date: 2019-03-26
    Description: In the following we present a new non-invasive methodology aimed at the diagnosis of stone building materials used in historical buildings and architectural elements. This methodology consists of the integrated sequential application of in situ proximal sensing methodologies such as the 3D Terrestrial Laser Scanner for the 3D modelling of investigated objects together with laboratory and in situ non-invasive multi-techniques acoustic data, preceded by an accurate petrographical study of the investigated stone materials by optical and scanning electron microscopy. The increasing necessity to integrate different types of techniques in the safeguard of the Cultural Heritage is the result of the following two interdependent factors: 1) The diagnostic process on the building stone materials of monuments is increasingly focused on difficult targets in critical situations. In these cases, the diagnosis using only one type of non-invasive technique may not be sufficient to investigate the conservation status of the stone materials of the superficial and inner parts of the studied structures 2) Recent technological and scientific developments in the field of non-invasive diagnostic techniques for different types of materials favors and supports the acquisition, processing and interpretation of huge multidisciplinary datasets.
    Description: Regione Autonoma della Sardegna (RAS) (Sardinian Autonomous Region), Regional Law 7th August 2007, no. 7, Promotion of scientific research and technological innovation in Sardinia (Italy).
    Description: Published
    Description: 4334
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Non-invasive methodology ; Stone building materials ; Diagnosis ; 3D Terrestrial Laser Scanner ; Non-invasive multi-techniques acoustic data ; Microscopy ; Methodology for the non-destructive diagnosis of architectural elements ; Cultural Heritage
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...