ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon  (6)
  • Chemistry
  • Inorganic Chemistry
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (9)
  • Station Océanographique de Salammbô  (1)
  • 2015-2019  (10)
  • 1995-1999
  • 1990-1994
  • 1950-1954
  • 1925-1929
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2018
    Description: This thesis examines abiotic processes controlling the transformation and distribution of carbon compounds in seafloor hydrothermal systems hosted in ultramafic rock. These processes have a direct impact on carbon budgets in the oceanic lithosphere and on the sustenance of microorganisms inhabiting hydrothermal vent ecosystems. Where mantle peridotite interacts with carbon-bearing aqueous fluids in the subseafloor, dissolved inorganic carbon can precipitate as carbonate minerals or undergo reduction by H2(aq) to form reduced carbon species. In Chapters 2 and 3, I conduct laboratory experiments to assess the relative extents of carbonate formation and CO2 reduction during alteration of peridotite by CO2(aq)-rich fluids. Results from these experiments reveal that formation of carbonate minerals is favorable on laboratory timescales, even at high H2(aq) concentrations generated by serpentinization reactions. Although CO2(aq) attains rapid metastable equilibrium with formate, formation of thermodynamically stable CH4(aq) is kinetically limited on timescales relevant for active fluid circulation in the subseafloor. It has been proposed that CH4 and potentially longer-chain hydrocarbons may be sourced, instead, from fluid inclusions hosted in plutonic and mantle rocks. Chapter 4 analyzes CH4-rich fluid inclusions in olivine-rich basement rocks from the Von Damm hydrothermal field and the Zambales ophiolite to better understand the origin of abiotic hydrocarbons in ultramaficinfluenced hydrothermal systems. Comparisons of hydrocarbon abundances and stable isotopic compositions in fluid inclusions and associated vent fluids suggest that fluid inclusions may provide a significant contribution of abiotic hydrocarbons to both submarine and continental serpentinization systems.
    Description: This thesis research was funded by the National Science foundation through grants OCE- 1427274 and OCE-1634032. Louise Von Damm generously contributed financial support for research conducted in Chapter 4.
    Keywords: Carbon ; Ocean bottom ; Lithosphere ; Hydrothermal vents ; Microorganisms
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2018
    Description: Many chemical constituents are removed from the ocean by attachment to settling particles, a process referred to as “scavenging.” Radioisotopes of thorium, a highly particle-reactive element, have been used extensively to study scavenging in the ocean. However, this process is complicated by the highly variable chemical composition and concentration of particles in oceanic waters. This thesis focuses on understanding the cycling of thorium as affected by particle concentration and particle composition in the North Atlantic. This objective is addressed using (i) the distributions 228,230,234Th, their radioactive parents, particle composition, and bulk particle concentration, as measured or estimated along the GEOTRACES North Atlantic Transect (GA03) and (ii) a model for the reversible exchange of thorium with particles. Model parameters are either estimated by inversion (chapter 2-4), or prescribed in order to simulate 230Th in a circulation model (chapter 5). The major findings of this thesis follow. In chapters 2 and 3, I find that the rate parameters of the reversible exchange model show systematic variations along GA03. In particular, 𝑘1, the apparent first-order rate "constant" of Th adsorption onto particles, generally presents maxima in the mesopelagic zone and minima below. A positive correlation between 𝑘1 and bulk particle concentration is found, consistent with the notion that the specific rate at which a metal in solution attaches to particles increases with the number of surface sites available for adsorption. In chapter 4, I show that Mn (oxyhydr)oxides and biogenic particles most strongly influence 𝑘1 west of the Mauritanian upwelling, but that biogenic particles dominate 𝑘1 in this region. In chapter 5, I find that dissolved 230Th data are best represented by a model that assumes enhanced values of 𝑘1 near the seafloor. Collectively, my findings suggest that spatial variations in Th radioisotope activities observed in the North Atlantic reflect at least partly variations in the rate at which Th is removed from the water column.
    Description: This work was supported by the US National Science Foundation. Two US NSF grants have supported the research in this thesis (OCE-1232578 and OCE-155644).
    Keywords: Thorium ; Chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2018.
    Description: The biological carbon pump (BCP) helps to moderate atmospheric carbon dioxide levels by bringing carbon to the deep ocean, where it can be sequestered on timescales of centuries to millennia. Climate change is predicted to decrease the efficiency of the global BCP, however, the magnitude and timescale of this shift is largely uncertain and will likely impact some areas of the global ocean more significantly than others. Therefore, it is imperative that we (1) accurately quantify surface export and remineralization of particulate organic carbon (POC) via the BCP over large regions of the global ocean, (2) examine the factors controlling these POC fluxes and their variability, which includes the cycling of biologically-relevant trace metals, and (3) establish if and how the BCP is changing over time. This thesis focuses on addressing various aspects of these objectives using the 234Th-238U method across basin-scale GEOTRACES transects. First, the export and remineralization of POC were examined across large gradients in productivity, upwelling, community structure, and dissolved oxygen in the southeastern tropical Pacific Ocean. Although low oxygen zones are traditionally thought to have decreased POC flux attenuation relative to other regions of the global ocean and the low oxygen Pacific locations followed this pattern, regions that were functionally anoxic had enhanced attenuation in the upper 400 m. Second, trace metal export and remineralization were quantified across the Pacific transect. Because many trace metals are necessary for the metabolic functions of marine organisms and can co-limit marine productivity, the controls on the cycling of trace metals in the upper ocean were examined. Lastly, POC export was determined across two transects in the Western Arctic Ocean, where light and nutrient availability drive the biological pump. Upper ocean export estimates in the central basin did not reflect a substantial change in the biological pump compared to studies from the last three decades, however, an extensive maximum in 234Th relative to 238U deeper in the water column indicated that rapid vertical transport had occurred, which could suggest a more efficient biological pump in the Arctic Ocean.
    Description: I was funded under the NASA Earth and Space Science Fellowship Program grant (NNX13AP31H) for three years. I was also funded for work on the U.S. Pacific and Arctic GEOTRACES campaigns under two National Science Foundation grants (OCE-1232669 and OCE- 1458305). The MIT Henry G. Houghton Fund provided support for the purchase of computers and textbooks and the MIT Scurlock Fund allowed for my travel to Bermuda for cruise training. WHOI Academic Programs supplemented the aforementioned funding and also provided additional support for travel to conferences.
    Keywords: Carbon ; Climatic changes ; Ocean ; Thomas G. Thompson (Ship) Cruise TN303
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2017
    Description: This thesis documents the origin, distribution, and fate of methane and several of its isotopic forms on Earth. Using observational, experimental, and theoretical approaches, I illustrate how the relative abundances of 12CH4, 13CH4, 12CH3D, and 13CH3D record the formation, transport, and breakdown of methane in selected settings. Chapter 2 reports precise determinations of 13CH3D, a “clumped” isotopologue of methane, in samples collected from various settings representing many of the major sources and reservoirs of methane on Earth. The results show that the information encoded by the abundance of 13CH3D enables differentiation of methane generated by microbial, thermogenic, and abiogenic processes. A strong correlation between clumped- and hydrogen-isotope signatures in microbial methane is identified and quantitatively linked to the availability of H2 and the reversibility of microbially-mediated methanogenesis in the environment. Determination of 13CH3D in combination with hydrogen-isotope ratios of methane and water provides a sensitive indicator of the extent of C–H bond equilibration, enables fingerprinting of methane-generating mechanisms, and in some cases, supplies direct constraints for locating the waters from which migrated gases were sourced. Chapter 3 applies this concept to constrain the origin of methane in hydrothermal fluids from sediment-poor vent fields hosted in mafic and ultramafic rocks on slow- and ultraslow-spreading mid-ocean ridges. The data support a hypogene model whereby methane forms abiotically within plutonic rocks of the oceanic crust at temperatures above ca. 300 C during respeciation of magmatic volatiles, and is subsequently extracted during active, convective hydrothermal circulation. Chapter 4 presents the results of culture experiments in which methane is oxidized in the presence of O2 by the bacterium Methylococcus capsulatus strain Bath. The results show that the clumped isotopologue abundances of partially-oxidized methane can be predicted from knowledge of 13C/12C and D/H isotope fractionation factors alone.
    Description: The research activities documented in this thesis were made possible by grants to my advisor from the U.S. National Science Foundation (NSF award EAR-1250394), the National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI, University of Colorado, Boulder, CAN 7 under Cooperative Agreement NNA15BB02A), the Department of Energy (DOE, Small Business Innovation Research program, contract DE-SC0004575), the Alfred P. Sloan Foundation via the Deep Carbon Observatory, and a Shell Graduate Fellowship through the MIT Energy Initiative. I completed the bulk of the work in this thesis while being supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship awarded through the Office of Naval Research of the U.S. Department of Defense. The StanleyW.Watson Fellowship Fund provided support during my first summer term at WHOI.The Charles M. Vest Presidential Fellowship at MIT supported me in the first year of my Ph.D. studies. I received additional support that year through NSF award EAR-1159318 (to S. Ono and T. Bosak) and theWalter & Adel Hohenstein Graduate Fellowship of Phi Kappa Phi. The MIT Earth Resources Laboratory and PAOC Houghton Fund funded my attendance at several conferences.
    Keywords: Methane ; Chemistry ; Isotopes ; Oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: Particulate organic carbon (POC) in the ocean and mobilized by rivers on land transfers ~0.1% of global primary productivity to the deep ocean sediments. This small fraction regulates the long-term carbon cycle by removing carbon dioxide from the atmosphere for centuries to millennia. This thesis investigates mechanisms of POC transfer to the deep ocean by analyzing particles collected in transit through two globally significant carbon reservoirs: the Southern Ocean and the Amazon River Basin. These endeavors test the hypothesis that organic matter composition controls the recycling and transfer efficiency of POC to the deep ocean, and illustrate new applications for ramped pyrolysis/oxidation (RPO), a growing method of POC characterization by thermal stability. By coupling RPO to stable and radiocarbon isotope analyses of riverine POC, I quantify three thermally distinct soil organic carbon pools mobilized by the Amazon River, and evaluate the degradability and fate of these different pools during transport to the coastal Atlantic Ocean. More directly, RPO analyses of marine samples suggest that POC transfer in the water column is in fact selective. Observations of consistent biomolecular changes that accompany transport of phytoplankton-derived organic matter to depth across the Southern Ocean support the argument for preferential degradation of specific POC pools in the water column. Combining discussions of POC recycling and transfer across both marine and terrestrial systems offer new perspectives of thermal stability as a proxy for diagenetic stability and POC degradation state. The challenges of interpreting RPO data in these two environments set the stage for applying the technique to more controlled experiments that trace POC from source to long-term sink.
    Description: The research in this dissertation was funded by the National Science Foundation Graduate Research Fellowship Program, the Woods Hole Research Center Board of Trustees, the WHOI Ocean Exploration Institute Student Fellowship, WHOI Ocean Ventures Fund, the WHOI Coastal Ocean Institute Grant, the National Ocean Sciences Accelerator Mass Spectrometry student research and development support, the WHOI Academic Programs Office, the PAOC Houghton Fund, WHOI start up funds, and several NSF and NASA awards: NSF OCE-090880, NSF OCE-0961660, NSF OCE- 1443577, NSF OCE-1333387, NSF OCE-1233272, NASA NNX11A072G, and NASA NNX11AL93G.
    Keywords: Carbon ; Carbon dioxide ; Atmosphere
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: The marine carbon cycle plays an important role in regulating Earth’s climate. The vastness of the open ocean and the large variability in the coastal ocean provide obstacles to accurately quantify storage and transport of inorganic carbon within marine ecosystems and between marine and other earth systems. Thus far, the open ocean has been the only true net sink of anthropogenic carbon dioxide (Canthro) emissions. However, ocean storage of Canthro is not uniformly distributed. Changes in water chemistry in the Northeast Pacific were quantified to estimate the amount of Canthro stored in this region over the last decade. This additional Canthro was found to cause acidification and aragonite saturation horizon shoaling at rates towards the higher end of those found in Pacific and Atlantic Ocean basins, making the Northeast Pacific one of the most sensitive regions to the invasion of anthropogenic carbon dioxide. Due to large variability in biogeochemical signals in coastal oceans, it is challenging to accurately assess carbon fluxes across different boundaries, such as tidal exchange between coastal wetlands and coastal oceans. Coastal salt marshes have been suggested to be a large net CO2 sink, thus designated as a type of “blue carbon.” However, accurate and dynamic estimates of carbon fluxes to and from tidal marshes are still premature, particularly carbon fluxes from marshes to the coastal ocean via tidal exchange, often referred to as marsh lateral fluxes. In this thesis, lateral total alkalinity (TA) and dissolved inorganic carbon (DIC) export fluxes were realistically quantified using high frequency time-series, in situ data. High-resolution fluxes permitted a closer look at how marsh generated TA and DIC are being exported over diurnal, spring-neap, and seasonal scales. I investigated the best way to capture variability of marsh exports via traditional bottle sampling and assessed uncertainties associated with different sampling strategies. Marsh TA and DIC exports significantly modified buffering capacity of coastal waters. This work contains the first realistic estimate of TA exports from a tidal salt marsh. Accurate estimates of DIC and TA fluxes indicate the significance of salt marshes to the coastal carbon and alkalinity budgets.
    Description: The work in this thesis was supported by the National Science Foundation Graduate Research Fellowship Program, Link Foundation Ocean Engineering and Instrumentation Ph.D. Fellowship, WHOI Academic Programs Office, MIT PAOC Houghton Fund, MIT Student Assistance Fund, WHOI Innovative Technology Award (PI: Wang), National Institute of Science and Technologies (NIST no. 60NANB10D024, PIs: Camilli, Wang), USGS LandCarbon Program, USGS Coastal and Marine Geology Program, NSF (OCE-1233654, PI: Wang; OCE-1041068 PIs: Lawson, Wang, Wiebe, Lavery; OCE-1459521 PIs: Wang, Kroeger, Gonneea), and NOAA Science Collaborative (NA09NOS4190153, PIs: Leschen, Roth, Surgeon-Rogers, Tang, Kroeger, Ganju, Moseman-Valtierra, Abdul-Aziz, Emmett-Mattox, Emmer, Crooks, Megonigal, Walker, Weidman).
    Keywords: Carbon ; Climatology ; Metabolism ; Salt marshes ; Carbon dioxide ; New Horizon (Ship) Cruise NH1208
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: Salt marshes are physically, chemically, and biologically dynamic environments found globally at temperate latitudes. Tidal creeks and marshtop ponds may expand at the expense of productive grass-covered marsh platform. It is therefore important to understand the present magnitude and drivers of production and respiration in these submerged environments in order to evaluate the future role of salt marshes as a carbon sink. This thesis describes new methods to apply the triple oxygen isotope tracer of photosynthetic production in a salt marsh. Additionally, noble gases are applied to constrain air-water exchange processes which affect metabolism tracers. These stable, natural abundance tracers complement traditional techniques for measuring metabolism. In particular, they highlight the potential importance of daytime oxygen sinks besides aerobic respiration, such as rising bubbles. In tidal creeks, increasing nutrients may increase both production and respiration, without any apparent change in the net metabolism. In ponds, daytime production and respiration are also tightly coupled, but there is high background respiration regardless of changes in daytime production. Both tidal creeks and ponds have higher respiration rates and lower production rates than the marsh platform, suggesting that expansion of these submerged environments could limit the ability of salt marshes to sequester carbon.
    Description: Financial support for my doctoral research was provided by the United States Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program, the National Science Foundation under grant OCE-1233678, and the Woods Hole Oceanographic Institution (WHOI) under grants from the WHOI Coastal Ocean Institute, Ocean and Climate Change Institute, and Ocean Life Institute. WHOI Academic Programs Office also provided funding support for research, through the Ocean Ventures Fund, and for my stipend, as graduate research assistantships including an assistantship from the United States Geological Survey administered by WHOI.
    Keywords: Marshes ; Chemistry ; Metabolism ; Knorr (Ship : 1970-) Cruise KN210-04
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: Terrestrial organic carbon (OC) erosion, remineralization, transport through river networks, and burial in marine sediments is a major pathway of the global carbon cycle. However, our ability to constrain these processes and fluxes is largely limited by (i) analytical capability and (ii) temporal sampling resolution. To address issue (i), here I discuss methodological advancements and data analysis techniques for the Ramped PyrOx serial oxidation isotope method developed at WHOI. Ramped-temperature pyrolysis/oxidation coupled with the stable carbon (12C, 13C) and radiocarbon (14C) analysis of evolved CO2 is a promising tool for understanding and separating complex OC mixtures. To quantitatively investigate distributions of OC source, reservoir age, and chemical structure contained within a single sample, I developed a kinetic model linking RPO-derived activation energy, 13C composition, and radiocarbon content. This tool provides a novel method to fundamentally address the unknown relationship between OC remineralization rates and chemical structure in various environmental settings. To address issue (ii), I additionally present results from time-series sample sets collected on two end-member systems: the Congo River (Central Africa) and the LiWu River (Taiwan). For the Congo River, bulk and plant-wax-lipid 13C compositions indicate that a majority of particulate OC is consistently derived from downstream, C3-dominated rainforest ecosystems. Furthermore, bulk radiocarbon content and microbial lipid molecular distributions are strongly correlated with discharge, suggesting that pre-aged, swamp-forest-derived soils are preferentially exported when northern hemisphere discharge is highest. Combined, these results provide insight into the relationship between hydrological processes and fluvial carbon export. Lastly, I examined the processes controlling carbon source and flux in a set of soils and time-series fluvial sediments from the LiWu River catchment located in Taiwan. A comparison between bedrock and soil OC content reveals that soils can contain significantly less carbon than the underlying bedrock, suggesting that this material is remineralized to CO2 prior to soil formation. Both the presence of bacterial lipids and a shift toward lower activation energy of 14C-free OC contained in soil saprolite layers indicate that this process is microbially mediated and that microbial respiration of rock-derived OC likely represents a larger geochemical flux than previously thought. The results presented in this thesis therefore provide novel insight into the role of rivers in the global carbon cycle as well as their response to environmental perturbations.
    Description: NSF Graduate Research Fellowship, the WHOI Ocean Ventures Fund, and the MIT-WHOI Academic Programs Office. The research conducted during this thesis was additionally supported by NSF grants OCE-1357017, OCE-1333387, OCE-1400805, as well as WHOI Independent Study and Coastal Oceans Institute Awards granted to Valier Galy.
    Keywords: Carbon ; Marine sediment
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: Key players in the marine carbon cycle are the ocean-dwelling microbes that fix, remineralize, and transform organic matter. Many of the small organic molecules in the marine carbon pool have not been well characterized and their roles in microbial physiology, ecological interactions, and carbon cycling remain largely unknown. In this dissertation metabolomics techniques were developed and used to profile and quantify a suite of metabolites in the field and in laboratory experiments. Experiments were run to study the way a specific metabolite can influence microbial metabolite output and potentially processing of organic matter. Specifically, the metabolic response of the heterotrophic marine bacterium, Ruegeria pomeroyi, to the algal metabolite dimethylsulfoniopropionate (DMSP) was analyzed using targeted and untargeted metabolomics. The manner in which DMSP causes R. pomeroyi to modify its biochemical pathways suggests anticipation by R. pomeroyi of phytoplankton-derived nutrients and higher microbial density. Targeted metabolomics was used to characterize the latitudinal and vertical distributions of particulate and dissolved metabolites in samples gathered along a transect in the Western Atlantic Ocean. The assembled dataset indicates that, while many metabolite distributions co-vary with biomass abundance, other metabolites show distributions that suggest abiotic, species specific, or metabolic controls on their variability. On sinking particles in the South Atlantic portion of the transect, metabolites possibly derived from degradation of organic matter increase and phytoplankton-derived metabolites decrease. This work highlights the role DMSP plays in the metabolic response of a bacterium to the environment and reveals unexpected ways metabolite abundances vary between ocean regions and are transformed on sinking particles. Further metabolomics studies of the global distributions and interactions of marine biomolecules promise to provide new insights into microbial processes and metabolite cycling.
    Description: I was supported for three years by a National Defense Science & Engineering Graduate Fellowship. The research was carried out with grants from the National Science Foundation (OCE-0928424 to EBK, OCE-1154320 to EBK and KL), the Gordon and Betty Moore Foundation (GBMF3304), Simons Foundation International, and the WHOI Ocean Ventures Fund.
    Keywords: Carbon ; Microorganisms ; Knorr (Ship : 1970-) Cruise KN210-04 ; Atlantic Exploer (Ship) Cruise AE1319
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Station Océanographique de Salammbô | Paris, France
    Publication Date: 2021-05-19
    Description: La détermination de la chloruration des eaux de mer est effectuée depuis de nombreuses années par la méthode volémetrisque de Moher.
    Description: Published
    Keywords: Volumetric analysis ; Sea water ; Chemistry ; Density ; Water density ; Chlorination ; Methodology ; Marine
    Repository Name: AquaDocs
    Type: Book/Monograph/Conference Proceedings , Refereed
    Format: 28pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...