ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Boundary currents
  • Ocean circulation
  • Turbulence
  • American Meteorological Society  (54)
  • Wiley-Blackwell  (17)
  • Springer Nature
  • Springer Science + Business Media
  • 2015-2019  (54)
  • 1995-1999  (2)
  • 1990-1994  (15)
  • 1960-1964
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electroanalysis 9 (1997), S. 509-522 
    ISSN: 1040-0397
    Keywords: Ultrasound ; Sor oelectrochemistry ; Cavitation ; Turbulence ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The considerable progress made in the development of fundamental and applied aspects of sonoelectrochemistry, the coupling of power ultrasound into an electrochemical experiment, is reviewed with respect mainly to the measurement and analysis of effects observed in conventional sonoelectrochemical experiments in homogeneous environments. Based on the tools and methods now available it is hoped that the application of ultrasound in areas as diverse as electroanalytical and synthetic electrochemistry will be beneficial and new innovative approaches employing the various mechanical and chemical effects of ultrasound will result.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 919-934 
    ISSN: 0271-2091
    Keywords: Secondary clarifier ; Numerical model ; Density currents ; Turbulence ; Circular tank ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical model for predicting the velocity field and suspended solids distribution in a secondary circular clarifier with density difference is evaluated. The density effects are characterized by the inlet densimetric Froude number. This study focuses on the role of the reaction baffle position in the performance of the clarifiers. For a large-radius baffle and low densimetric Froude number an important phenomenon known as the density waterfall occurs in the inlet zone of the clarifiers. This was predicted by the numerical model and confirmed by the physical model tests. This model consists of a series of conservation equations for fluid mass and momentum and sediment concentration. The turbulent stresses are calculated by use of the eddy viscosity concept and the κ-∊. turbulence model. The study showed that the density waterfall results in high entrainment and high recirculation. A comparison of the solids concentration distribution for a tank with a small skirt radius to that with a large skirt radius shows that small skirt radius reduces the density waterfall effect and significantly improves the clarifier performance at low densimetric Froude numbers.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 369-382 
    ISSN: 0271-2091
    Keywords: Turbulence ; Recirculating flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This investigation deals with the modification of streamline curvature effects in the k-ε turbulence model for the case of recirculating flows. Based upon an idea that the modification of curvature effects in C2 should not be made in regions where the streamline curvature is small, a hybrid k-ε model extended from the modification originally proposed by Srinivasan and Mongia is developed. A satisfactory agreement of model predictions with experimental data reveals that the hybrid k-ε model can perform better simulation of recirculating turbulent flows.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 39-56 
    ISSN: 0271-2091
    Keywords: Aerodynamics ; Turbulence ; Separation ; CLmax ; Laminar ; Bubble ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The algebraic turbulent model of Baldwin and Lomax was incorporated into the incompressible full Navier-Stokes code FIDAP. This model was extensively tested in the past in finite difference codes. We believe that the incorporation of the model also into the finite element code has resulted in a practical method to compute a variety of separated turbulent 2D flows. Firstly, we use the model to compute the attached flow about an aerofoil. Next, the application of the model to separated flows is presented by computing the flows at high angles of attack up to maximum lift. It is shown that the model is capable of predicting separation, steady stall and CLmax. As a difficult test of the model we compute the laminar separation bubble development directly using the full Navier-Stokes finite element code. As far as we know, this approach has not yet been reported. The importance of using an appropriate upwinding is discussed. When possible, comparison of computed results with experiments is presented and the agreement is good.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 10 (1990), S. 519-555 
    ISSN: 0271-2091
    Keywords: Simulation ; Large eddy simulation ; Turbulence ; Boundary layer ; Developing flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A spectral code has been used to simulate a developing turbulent boundary layer at low Reynolds number Reθ (based on free stream velocity and momentum thickness) between 353 and 576. The starting field was generated by allowing a step change of temperature to diffuse outwards from one wall in a fully developed channel flow. The thermal boundary layer so created was conditionally sampled to convert it into a momentum boundary layer with an irrotational free stream region, a process which is justified by appeal to experiments. This initial field was allowed to develop until the momentum boundary layer thickness δ995 had grown to about 1·5 times its original thickness.The results of the simulation have been compared with a wide range of experimental data. The outcome of this comparison is generally very satisfactory; the main trends of the experiments are well reproduced and our simulation supplements and extends the existing sets of experimental data. The simulation also gives pressure statistics which cannot be obtained experimentally. In particular, it gives the contribution of pressure diffusion to the balance equations for the Reynolds stress and indicates the error produced by omitting this term.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 677-695 
    ISSN: 0271-2091
    Keywords: Turbulence ; Incompressible ; Navier-Stokes ; Finite element ; κ-epsilon ; Transient flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In general the κ-ε turbulence model is used for stationary turbulent mean flow. First we review some of the hypotheses for the derivation of the model. Then we study it from the point of view of the numerical analyst (positivity of κ and ε, boundedness, etc.). Finally we analyse an extension called MPP, specially derived for transient mean flow. The rest of the paper is devoted to a robust (stable) numerical implementation of these models and several tests for the flow behind a cylinder.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 585-604 
    ISSN: 0271-2091
    Keywords: Turbulence ; Channel flow ; Karhunen-Loève expansion ; Eigenfunctions ; Orthogonal decomposition ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loéve(K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re,= 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90% of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, posses viscous boundary layers at the walls and are much richer in harmonics than the original basis functions. Chaotic temporal behaviour is observed in all modes and increases for higher-order eigenfunctions. The structure and dynamical behaviour of the eigenmodes are discussed as well as their use in the representation of the turbulent flow.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 127-146 
    ISSN: 0271-2091
    Keywords: Numerical simulation ; Slug flow ; Turbulence ; Dissipation ; Open surface ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Steps towards the numerical simulation of the flow behind the slug front in horizontal slug flow performed with a streamfunction-vorticity representation of the mean flow and an energy dissipation model for the turbulence are discussed. The flow field consists of two vortices, one saddle point and four stagnation regions. Attention is focused on the following boundary conditions: moving wall jet, moving wall, free jet velocity discontinuity and vertical liquid-gas open surface. A dissipation flux boundary condition is suggested to simulate the interaction of the turbulent eddies with the open surface. A method to assess the necessity to use a transport model equation for the dissipation rather than a geometric specification of a length is suggested. Three different ways to characterize the mixing zone length are proposed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 127-146 
    ISSN: 0271-2091
    Keywords: Turbulence ; Free surface ; k-∊ model ; Numerical ; Algorithm ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A simple technique is presented for the numerical solution of two-dimensional time-dependent flows, either laminar or turbulent, involving multiple free surfaces of arbitrary configuration. The governing equations are the Reynolds equations for incompressible fluids with Boussinesq closure, the k- and ∊-equations and an additional equation describing the fluid configuration. This technique can potentially describe the propagation, deformation and overturning of pre-breaking waves and the mean flow, surface configuration and turbulence field after breaking. The properties of the method are illustrated by several calculational examples. The main parts of the algorithm are optimized for vector processing in a form suitable for installation in supercomputer facilities.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 747-771 
    ISSN: 0271-2091
    Keywords: Turbulence ; Two-equation model ; Two-layer approach ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A two-layer approach is proposed to compute complex flows including separations. For high- and low-Reynolds-number regions we use a two-equation k-∊ model and a one-equation k-L model respectively. A robust algorithm is proposed for the treatment of the convective part of the turbulence equations. Several complex configurations including separations are computed.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...