ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate variability  (13)
  • Arctic  (12)
  • American Meteorological Society  (20)
  • American Geophysical Union  (5)
  • American Chemical Society
  • 2015-2019  (25)
  • 1995-1999
  • 1990-1994
  • 1980-1984
  • 1975-1979
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1739-1751, doi:10.1175/JCLI-D-16-0200.1.
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the twentieth century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multidecadal variations associated with the Pacific decadal oscillation, and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multidecadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward-propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Description: This research was supported by a Research Fellowship by the Alexander von Humboldt Foundation, as well as the Ocean Climate Change Institute and the Investment in Science Fund at WHOI.
    Description: 2017-08-15
    Keywords: Indian Ocean ; Ocean dynamics ; Climate variability ; Multidecadal variability ; Pacific decadal oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 123(12), (2018): 8674-8687, doi:10.1002/2018JC013766.
    Description: A large collaborative program has studied the coupled air‐ice‐ocean‐wave processes occurring in the Arctic during the autumn ice advance. The program included a field campaign in the western Arctic during the autumn of 2015, with in situ data collection and both aerial and satellite remote sensing. Many of the analyses have focused on using and improving forecast models. Summarizing and synthesizing the results from a series of separate papers, the overall view is of an Arctic shifting to a more seasonal system. The dramatic increase in open water extent and duration in the autumn means that large surface waves and significant surface heat fluxes are now common. When refreezing finally does occur, it is a highly variable process in space and time. Wind and wave events drive episodic advances and retreats of the ice edge, with associated variations in sea ice formation types (e.g., pancakes, nilas). This variability becomes imprinted on the winter ice cover, which in turn affects the melt season the following year.
    Description: This program was supported by the Office of Naval Research, Code 32, under Program Managers Scott Harper and Martin Jeffries. The crew of R/V Sikuliaq provide outstanding support in collecting the field data, and the US National Ice Center, German Aerospace Center (DLR), and European Space Agency facilitated the remote sensing collections and daily analysis products. RADARSAT‐2 Data and Products are from MacDonald, Dettwiler, and Associates Ltd., courtesy of the U.S. National Ice Center. Data, supporting information, and a cruise report can be found at http://www.apl.uw.edu/arcticseastate
    Keywords: Arctic ; waves ; autumn ; sea ice ; Beaufort ; flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4847-4863, doi:10.1175/JCLI-D-17-0802.1.
    Description: The sensitivity of sea ice to the temperature of inflowing Atlantic water across the Greenland–Scotland Ridge is investigated using an eddy-resolving configuration of the Massachusetts Institute of Technology General Circulation Model with idealized topography. During the last glacial period, when climate on Greenland is known to have been extremely unstable, sea ice is thought to have covered the Nordic seas. The dramatic excursions in climate during this period, seen as large abrupt warming events on Greenland and known as Dansgaard–Oeschger (DO) events, are proposed to have been caused by a rapid retreat of Nordic seas sea ice. Here, we show that a full sea ice cover and Arctic-like stratification can exist in the Nordic seas given a sufficiently cold Atlantic inflow and corresponding low transport of heat across the Greenland–Scotland Ridge. Once sea ice is established, continued sea ice formation and melt efficiently freshens the surface ocean and makes the deeper layers more saline. This creates a strong salinity stratification in the Nordic seas, similar to today’s Arctic Ocean, with a cold fresh surface layer protecting the overlying sea ice from the warm Atlantic water below. There is a nonlinear response in Nordic seas sea ice to Atlantic water temperature with simulated large abrupt changes in sea ice given small changes in inflowing temperature. This suggests that the DO events were more likely to have occurred during periods of reduced warm Atlantic water inflow to the Nordic seas.
    Description: The research was supported by the Centre for Climate Dynamics at the Bjerknes Centre for Climate Research. The research leading to these results is part of the ice2ice project funded by the European Research Council under the European Community Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 610055.
    Keywords: Ocean ; Arctic ; Sea ice ; Ocean dynamics ; Paleoclimate ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 123(12), (2018): 8887-8901, doi:10.1029/2018JC013797.
    Description: Sea ice is one of the determining parameters of the climate system. The presence of melt ponds on the surface of Arctic sea ice plays a critical role in the mass balance of sea ice. A total of nine cores was collected from multiyear ice refrozen melt ponds and adjacent hummocks during the 2015 Arctic Sea State research cruise. The depth profiles of water isotopes, salinity, and ice texture for these sea ice cores were examined to provide information about the development of refrozen melt ponds and water balance generation processes, which are otherwise difficult to acquire. The presence of meteoric water with low oxygen isotope values as relatively thin layers indicates melt pond water stability and little mixing during formation and refreezing. The hydrochemical characteristics of refrozen melt pond and seawater depth profiles indicate little snowmelt enters the upper ocean during melt pond refreezing. Due to the seasonal characters of deuterium excess for Arctic precipitation, water balance calculations utilizing two isotopic tracers (oxygen isotope and deuterium excess) suggest that besides the melt of snow cover, the precipitation input in the melt season may also play a role in the evolution of melt ponds. The dual‐isotope mixing model developed here may become more valuable in a future scenario of increasing Arctic precipitation. The layers of meteoric origin were found at different depths in the refrozen melt pond ice cores. Surface topography information collected at several core sites was examined for possible explanations of different structures of refrozen melt ponds.
    Description: The coauthors (S. F. A., S. S., T. M., and B. W.) wish to thank the other DRI participants and the Captain and crew of the Sikuliaq's October 2015 cruise for their assistance in the sample collections analyzed in the paper. Jim Thomson (Chief Scientist), Scott Harper (ONR Program Manager), and Martin Jeffries (ONR Program Manager) are particularly acknowledged for their unwavering assistance and leadership during the 5 years of the SeaState DRI. We thank Guy Williams for production of the aerial photo mosaic. Funding from the Office of Naval Research N00014‐13‐1‐0435 (S. F. A. and B. W.), N00014‐13‐1‐0434 (S. S.), and N00014‐13‐1‐0446 (T. M.) supported this research through grants to UTSA, UColorado, and WHOI, respectively. This project was also funded (in part) by the University of Texas at San Antonio, Office of the Vice President for Research (Y. G. and S. F. A.). Data for the stable isotope mixing models used in this study are shown in supporting information Tables S1–S3.
    Description: 2019-05-15
    Keywords: Arctic ; sea ice ; isotope tracer ; melt pond ; oxygen isotope ; deuterium excess
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 3004–3023, doi:10.1175/JCLI-D-14-00591.1.
    Description: Time series of surface meteorology and air–sea exchanges of heat, freshwater, and momentum collected from a long-term surface mooring located 1600 km west of the coast of northern Chile are analyzed. The observations, spanning 2000–10, have been withheld from assimilation into numerical weather prediction models. As such, they provide a unique in situ record of atmosphere–ocean coupling in a trade wind region characterized by persistent stratocumulus clouds. The annual cycle is described, as is the interannual variability. Annual variability in the air–sea heat flux is dominated by the annual cycle in net shortwave radiation. In austral summer, the ocean is heated; the 9-yr mean annual heating of the ocean is 38 W m−2. Ocean cooling is seen in 2006–08, coincident with La Niña events. Over the full record, significant trends were found. Increases in wind speed, wind stress, and latent heat flux over 9 yr were 0.8 m s−1, 0.022 N m−2, and 20 W m−2 or 13%, 29%, and 20% of the respective 9-yr means. The decrease in the annual mean net heat flux was 39 W m−2 or 104% of the mean. These changes were found to be largely associated with spring and fall. If this change persists, the annual mean net air–sea heat flux will change sign by 2016, when the magnitude of the wind stress will have increased by close to 60%.
    Description: This work is supported by the NOAA Climate Observation Division (NA09OAR4320129).
    Keywords: Climate variability ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 3647-3660, doi:10.1175/JCLI-D-15-0626.1.
    Description: An assessment is made of the mean and variability of the net air–sea heat flux, Qnet, from four products (ECCO, OAFlux–CERES, ERA-Interim, and NCEP1) over the global ice-free ocean from January 2001 to December 2010. For the 10-yr “hiatus” period, all products agree on an overall net heat gain over the global ice-free ocean, but the magnitude varies from 1.7 to 9.5 W m−2. The differences among products are particularly large in the Southern Ocean, where they cannot even agree on whether the region gains or loses heat on the annual mean basis. Decadal trends of Qnet differ significantly between products. ECCO and OAFlux–CERES show almost no trend, whereas ERA-Interim suggests a downward trend and NCEP1 shows an upward trend. Therefore, numerical simulations utilizing different surface flux forcing products will likely produce diverged trends of the ocean heat content during this period. The downward trend in ERA-Interim started from 2006, driven by a peculiar pattern change in the tropical regions. ECCO, which used ERA-Interim as initial surface forcings and is constrained by ocean dynamics and ocean observations, corrected the pattern. Among the four products, ECCO and OAFlux–CERES show great similarities in the examined spatial and temporal patterns. Given that the two estimates were obtained using different approaches and based on largely independent observations, these similarities are encouraging and instructive. It is more likely that the global net air–sea heat flux does not change much during the so-called hiatus period.
    Description: This paper is funded in part by the NOAA Climate Observation Division, Climate Program Office, under Grant NA09OAR4320129 and by the NOAA MAPP Climate Reanalysis Task Force Team under Grant NA13OAR4310106. The study was initiated when X. Liang was a postdoc at MIT, where he was supported in part by the NSF through Grant OCE-0961713, by NOAA through Grant NA10OAR4310135, and by the NASA Physical Oceanography Program through ECCO.
    Description: 2016-11-15
    Keywords: Physical Meteorology and Climatology ; Heat budgets/fluxes ; Surface fluxes ; Models and modeling ; Reanalysis data ; Variability ; Climate variability ; Interannual variability ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 2373-2384, doi:10.1175/JTECH-D-16-0024.1.
    Description: A long-path methane (CH4) sensor was developed and field deployed using an 8-μm quantum cascade laser. The high optical power (40 mW) of the laser allowed for path-integrated measurements of ambient CH4 at total pathlengths from 100 to 1200 m with the use of a retroreflector. Wavelength modulation spectroscopy was used to make high-precision measurements of atmospheric pressure–broadened CH4 absorption over these long distances. An in-line reference cell with higher harmonic detection provided metrics of system stability in rapidly changing and harsh environments. The system consumed less than 100 W of power and required no consumables. The measurements intercompared favorably (typically less than 5% difference) with a commercial in situ methane sensor when accounting for the different spatiotemporal scales of the measurements. The sensor was field deployed for 2 weeks at an arctic lake to examine the robustness of the approach in harsh field environments. Short-term precision over a 458-m pathlength was 10 ppbv at 1 Hz, equivalent to a signal from a methane enhancement above background of 5 ppmv in a 1-m length. The sensor performed well in a range of harsh environmental conditions, including snow, rain, wind, and changing temperatures. These field measurements demonstrate the capabilities of the approach for use in detecting large but highly variable emissions in arctic environments.
    Description: The authors gratefully acknowledge funding for this work by MIRTHE through NSF-ERC Grant EEC-0540832. D. J. Miller acknowledges support by the National Science Foundation Graduate Research Fellowship under Grant DGE-0646086. K. Sun acknowledges support by the NASA Earth and Space Science Fellowship IIP-1263579.
    Description: 2017-05-01
    Keywords: Arctic ; North America ; Greenhouse gases ; In situ atmospheric observations ; Instrumentation/sensors ; Field experiments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 4653–4687, doi:10.1175/JCLI-D-13-00326.1.
    Description: Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield responses to historical climate and two future emissions scenarios for maize in the U.S. Midwest and wheat in southeastern Australia. In addition to mean changes in yield, the frequency of high- and low-yield years was related to changing local hydroclimatic conditions. Particular emphasis was on the seasonal cycle of climatic variables during extreme-yield years and links to crop growth. While historically high (low) yields in Iowa tend to occur during years with anomalous wet (dry) growing season, this is exacerbated in the future. By the end of the twenty-first century, the multimodel mean (MMM) of growing season temperatures in Iowa is projected to increase by more than 5°C, and maize yield is projected to decrease by 18%. For southeastern Australia, the frequency of low-yield years rises dramatically in the twenty-first century because of significant projected drying during the growing season. By the late twenty-first century, MMM growing season precipitation in southeastern Australia is projected to decrease by 15%, temperatures are projected to increase by 2.8°–4.5°C, and wheat yields are projected to decline by 70%. Results highlight the sensitivity of yield projections to the nature of hydroclimatic changes. Where future changes are uncertain, the sign of the yield change simulated by Agro-IBIS is uncertain as well. In contrast, broad agreement in projected drying over southern Australia across models is reflected in consistent yield decreases for the twenty-first century. Climatic changes of the order projected can be expected to pose serious challenges for continued staple grain production in some current centers of production, especially in marginal areas.
    Description: This work was initiated at the Dissertations Initiative for the Advancement of Climate Change Research (DISCCRS) V Symposium, supported by the U.S. National Science Foundation through collaborative Grants SES-0932916 and SES-0931402. CCU was supported by a University of New South Wales Vice-Chancellor Fellowship and the Penzance Endowed Fund and John P. Chase Memorial Endowed Fund at WHOI. TET was supported by the U.S. Department of Energy Award DE-EE0004397. NC was funded by NSF Grant EAR-1204774. We are indebted to the FORMAS-funded Land Use Today and Tomorrow (LUsTT) project (Grant 211-2009-1682) for financial support.
    Keywords: Australia ; North America ; Climate change ; Climate models ; Climate variability ; Agriculture
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 7659–7677, doi:10.1175/JCLI-D-15-0007.1.
    Description: Maximum covariance analysis of a preindustrial control simulation of the NCAR Community Climate System Model, version 4 (CCSM4), shows that a barotropic signal in winter broadly resembling a negative phase of the North Atlantic Oscillation (NAO) follows an intensification of the Atlantic meridional overturning circulation (AMOC) by about 7 yr. The delay is due to the cyclonic propagation along the North Atlantic Current (NAC) and the subpolar gyre of a SST warming linked to a northward shift and intensification of the NAC, together with an increasing SST cooling linked to increasing southward advection of subpolar water along the western boundary and a southward shift of the Gulf Stream (GS). These changes result in a meridional SST dipole, which follows the AMOC intensification after 6 or 7 yr. The SST changes were initiated by the strengthening of the western subpolar gyre and by bottom torque at the crossover of the deep branches of the AMOC with the NAC on the western flank of the Mid-Atlantic Ridge and the GS near the Tail of the Grand Banks, respectively. The heat flux damping of the SST dipole shifts the region of maximum atmospheric transient eddy growth southward, leading to a negative NAO-like response. No significant atmospheric response is found to the Atlantic multidecadal oscillation (AMO), which is broadly realistic but shifted south and associated with a much weaker meridional SST gradient than the AMOC fingerprint. Nonetheless, the wintertime atmospheric response to the AMOC shows some similarity with the observed response to the AMO, suggesting that the ocean–atmosphere interactions are broadly realistic in CCSM4.
    Description: Support from the NOAA Climate Program Office (NA10OAR4310202 and NA13OAR4310139), NSF EaSM2 (OCE 1242989) and the European Community 7th framework programme (FP7 2007-2013) under Grant Agreement 308299 (NACLIM) is gratefully acknowledged. The analysis benefited from the IPSL Prodiguer-Ciclad facility, which is supported by CNRS, UPMC, Labex L-IPSL funded by the ANR (Grant ANR-10-LABX-0018) and by the European FP7 IS-ENES2 project (Grant 312979).
    Description: 2016-04-01
    Keywords: Meridional overturning circulation ; North Atlantic Oscillation ; Climate models ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 6201-6221, doi:10.1175/JCLI-D-15-0694.1.
    Description: Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall variability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. While ocean variability makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially indistinguishable from what one expects from a Gaussian white noise distribution. Internal atmosphere–land-driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the simulations. This suggests that oceanic variability may be less important than previously assumed for the long-term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term dry and wet spells for Australia.
    Description: This study was supported by the Australian Research Council (ARC) under ARC-DP1094784, ARC-DP-150101331, ARC-FL100100214, and funding for C.C.U. from the National Science Foundation under AGS-1602455 and the ARC Centre of Excellence for Climate System Science.
    Description: 2017-02-19
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Atm/Ocean Structure/ Phenomena ; Drought ; Precipitation ; Physical Meteorology and Climatology ; Climate variability ; Forecasting ; Climate prediction ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3263-3278, doi:10.1175/JPO-D-16-0091.1.
    Description: The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales, affecting the freshwater content (FWC) of the Arctic Ocean. This study explores the role of eddies in the Ekman-driven gyre variability. Following the transformed Eulerian-mean paradigm, the authors develop a theory that links the FWC variability to the stability of the large-scale gyre, defined as the inverse of its equilibration time. The theory, verified with eddy-resolving numerical simulations, demonstrates that the gyre stability is explicitly controlled by the mesoscale eddy diffusivity. An accurate representation of the halocline dynamics requires the eddy diffusivity of 300 ± 200 m2 s−1, which is lower than what is used in most low-resolution climate models. In particular, on interannual and longer time scales the eddy fluxes and the Ekman pumping provide equally important contributions to the FWC variability. However, only large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturbations being an order of magnitude less efficient. Lastly, the authors introduce a novel FWC tendency diagnostic—the Gyre Index—that can be conveniently calculated using observations located only along the gyre boundaries. Its strong predictive capabilities, assessed in the eddy-resolving model forced by stochastic winds, suggest that the Gyre Index would be of use in interpreting FWC evolution in observations as well as in numerical models.
    Description: GEMacknowledges the support from theHowland Postdoctoral Program Fund at WHOI and the Stanback Fellowship Fund at Caltech.MAS was supported by NSF Grants PLR-1415489 and OCE-1232389. AFT acknowledges support from NASA Award NNN12AA01C.
    Description: 2017-04-20
    Keywords: Arctic ; Eddies ; Ekman pumping/transport ; Large-scale motions ; Ocean circulation ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1367-1373, doi:10.1175/JPO-D-17-0185.1.
    Description: An earlier study indicates that the side melting of icebergs subject to vertically homogeneous horizontal velocities is controlled by two distinct regimes, which depend on the melt plume behavior and produce a nonlinear dependence of side melt rate on velocity. Here, we extend this study to consider ice blocks melting in a two-layer vertically sheared flow in a laboratory setting. It is found that the use of the vertically averaged flow speed in current melt parameterizations gives an underestimate of the submarine side melt rate, in part because of the nonlinearity of the dependence of the side melt rate on flow speed but also because vertical shear in the horizontal velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. An observational record of 90 icebergs in a Greenland fjord suggests that this effect could produce an average underestimate of iceberg side melt rates of 21%.
    Description: A. F. was supported by NA14OAR4320106 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. C. C. was supported by NSF OCE-1658079 and F. S. was supported by NSF OCE-1657601 and NSF PLR-1743693.
    Description: 2018-12-12
    Keywords: Ocean ; Antarctica ; Arctic ; Laboratory/physical models ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3490-3507, doi:10.1029/2018JC014675.
    Description: Offshore permafrost plays a role in the global climate system, but observations of permafrost thickness, state, and composition are limited to specific regions. The current global permafrost map shows potential offshore permafrost distribution based on bathymetry and global sea level rise. As a first‐order estimate, we employ a heat transfer model to calculate the subsurface temperature field. Our model uses dynamic upper boundary conditions that synthesize Earth System Model air temperature, ice mass distribution and thickness, and global sea level reconstruction and applies globally distributed geothermal heat flux as a lower boundary condition. Sea level reconstruction accounts for differences between marine and terrestrial sedimentation history. Sediment composition and pore water salinity are integrated in the model. Model runs for 450 ka for cross‐shelf transects were used to initialize the model for circumarctic modeling for the past 50 ka. Preindustrial submarine permafrost (i.e., cryotic sediment), modeled at 12.5‐km spatial resolution, lies beneath almost 2.5 ×106km2 of the Arctic shelf. Our simple modeling approach results in estimates of distribution of cryotic sediment that are similar to the current global map and recent seismically delineated permafrost distributions for the Beaufort and Kara seas, suggesting that sea level is a first‐order determinant for submarine permafrost distribution. Ice content and sediment thermal conductivity are also important for determining rates of permafrost thickness change. The model provides a consistent circumarctic approach to map submarine permafrost and to estimate the dynamics of permafrost in the past.
    Description: Boundary condition data are available online via the sources referenced in the manuscript. This work was partially funded by a Helmholtz Association of Research Centres (HGF) Joint Russian‐German Research Group (HGF JRG 100). This study is part of a project that has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement 773421. Submarine permafrost studies in the Kara and Laptev Seas were supported by Russian Foundation for Basic Research (RFBR/RFFI) grants 18‐05‐60004 and 18‐05‐70091, respectively. The International Permafrost Association (IPA) and the Association for Polar Early Career Scientists (APECS) supported research coordination that led to this study. We acknowledge coordination support of the World Climate Research Programme (WCRP) through their core project on Climate and Cryosphere (CliC). Thanks to Martin Jakobsson for providing a digitized version of the preliminary IHO delineation of the Arctic seas and to Guy Masters for access to the observational geothermal database. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Description: 2019-10-17
    Keywords: Submarine permafrost ; Arctic ; Cryosphere ; Sea level
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1277-1284, doi:10.1175/JPO-D-16-0027.1.
    Description: The contemporary Arctic Ocean differs markedly from midlatitude, ice-free, and relatively warm oceans in the context of density-compensating temperature and salinity variations. These variations are invaluable tracers in the midlatitudes, revealing essential fundamental physical processes of the oceans, on scales from millimeters to thousands of kilometers. However, in the cold Arctic Ocean, temperature variations have little effect on density, and a measure of density-compensating variations in temperature and salinity (i.e., spiciness) is not appropriate. In general, temperature is simply a passive tracer, which implies that most of the heat transported in the Arctic Ocean relies entirely on the ocean dynamics determined by the salinity field. It is shown, however, that as the Arctic Ocean warms up, temperature will take on a new role in setting dynamical balances. Under continued warming, there exists the possibility for a regime shift in the mechanisms by which heat is transported in the Arctic Ocean. This may result in a cap on the storage of deep-ocean heat, having profound implications for future predictions of Arctic sea ice.
    Description: Support was provided by the National Science Foundation Division of Polar Programs Award 1350046 and Office of Naval Research Grant Number N00014-12-1-0110.
    Description: 2016-10-05
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 1545-1571, doi:10.1175/JCLI-D-15-0509.1.
    Description: Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.
    Description: OM acknowledges support from the U.S. National Science Foundation. CW acknowledges support from the European Research Council ERC Grant ACCLIMATE 339108.
    Description: 2016-08-19
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Fronts ; Mathematical and statistical techniques ; Inverse methods ; Kalman filters ; Variability ; Climate variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric Sciences 76(10), (2019): 3013-3027, doi:10.1175/JAS-D-19-0095.1.
    Description: Recently Nakamura and Huang proposed a semiempirical, one-dimensional model of atmospheric blocking based on the observed budget of local wave activity in the boreal winter. The model dynamics is akin to that of traffic flow, wherein blocking manifests as traffic jams when the streamwise flux of local wave activity reaches capacity. Stationary waves modulate the jet stream’s capacity to transmit transient waves and thereby localize block formation. Since the model is inexpensive to run numerically, it is suited for computing blocking statistics as a function of climate variables from large-ensemble, parameter sweep experiments. We explore sensitivity of blocking statistics to (i) stationary wave amplitude, (ii) background jet speed, and (iii) transient eddy forcing, using frequency, persistence, and prevalence as metrics. For each combination of parameters we perform 240 runs of 180-day simulations with aperiodic transient eddy forcing, each time randomizing the phase relations in forcing. The model climate shifts rapidly from a block-free state to a block-dominant state as the stationary wave amplitude is increased and/or the jet speed is decreased. When eddy forcing is increased, prevalence increases similarly but frequency decreases as blocks merge and become more persistent. It is argued that the present-day climate lies close to the boundary of the two states and hence its blocking statistics are sensitive to climate perturbations. The result underscores the low confidence in GCM-based assessment of the future trend of blocking under a changing climate, while it also provides a theoretical basis for evaluating model biases and understanding trends in reanalysis data.
    Description: The main results of this paper emerged from a group project during Rossbypalooza, a student-led summer school at the University of Chicago in June 2018, with the theme of “Understanding climate through simple models.” The authors thank the participants of the summer school for their valuable feedback. Constructive criticisms of the two anonymous reviewers greatly improved the quality of the manuscript. The work is supported by NSF Grants AGS1563307 and AGS1810964
    Keywords: Blocking ; Nonlinear dynamics ; Planetary waves ; Potential vorticity ; Wave breaking ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 855-866, doi:10.1175/JPO-D-16-0194.1.
    Description: Mesoscale eddies shape the Beaufort Gyre response to Ekman pumping, but their transient dynamics are poorly understood. Climate models commonly use the Gent–McWilliams (GM) parameterization, taking the eddy streamfunction to be proportional to an isopycnal slope s and an eddy diffusivity K. This local-in-time parameterization leads to exponential equilibration of currents. Here, an idealized, eddy-resolving Beaufort Gyre model is used to demonstrate that carries a finite memory of past ocean states, violating a key GM assumption. As a consequence, an equilibrating gyre follows a spiral sink trajectory implying the existence of a damped mode of variability—the eddy memory (EM) mode. The EM mode manifests during the spinup as a 15% overshoot in isopycnal slope (2000 km3 freshwater content overshoot) and cannot be explained by the GM parameterization. An improved parameterization is developed, such that is proportional to an effective isopycnal slope , carrying a finite memory γ of past slopes. Introducing eddy memory explains the model results and brings to light an oscillation with a period ≈ 50 yr, where the eddy diffusion time scale TE ~ 10 yr and γ ≈ 6 yr are diagnosed from the eddy-resolving model. The EM mode increases the Ekman-driven gyre variance by γ/TE ≈ 50% ± 15%, a fraction that stays relatively constant despite both time scales decreasing with increased mean forcing. This study suggests that the EM mode is a general property of rotating turbulent flows and highlights the need for better observational constraints on transient eddy field characteristics.
    Description: GEM acknowledges the Stanback Postdoctoral Fellowship Fund at Caltech and the Howland Postdoctoral Program Fund at WHOI. MAS was supported by NSF Grants PLR-1415489 and OCE- 1232389. AFT acknowledges support from NSF OCE- 1235488.
    Keywords: Arctic ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Parameterization ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4309-4327, doi:10.1175/JCLI-D-17-0407.1.
    Description: Multidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.
    Description: This work is supported by NSF EaSM Grants AGS-1243125 and NCAR-1243107 to The University of Arizona.
    Description: 2018-11-03
    Keywords: Drought ; Climate variability ; ENSO ; Paleoclimate ; Climate models ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 8627-8643, doi:10.1175/JCLI-D-18-0010.1.
    Description: Drought has severe consequences for humans and their environment, yet we have a limited understanding of the drivers of drought across the full range of time scales on which it occurs. Here, the atmosphere and ocean conditions that drive this continuum of drought variability in southwestern North America (SWNA) are studied using the latest observationally based products, paleoclimate reconstructions, and state-of-the-art Earth system model simulations of the last millennium. A novel application of the self-organizing maps (SOM) methodology allows for a visualization of the continuum of climate states coinciding with thousands of droughts of varying lengths in last millennium simulations from the Community Earth System Model (CESM), the Goddard Institute for Space Studies Model E2-R (GISS E2-R), and eight other members from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is found that most droughts are associated with a cool Pacific decadal oscillation (PDO) pattern, but persistent droughts can coincide with a variety of ocean–atmosphere states, including time periods showing a warm PDO or weak ocean–atmosphere anomalies. Many CMIP5 models simulate similar SWNA teleconnection patterns, but the SOM analysis demonstrates that models simulate different continuums of ocean–atmosphere states coinciding with droughts of different lengths, suggesting fundamental differences in their drought dynamics. These findings have important implications for our understanding and simulation of the drivers of persistent drought, and for their potential predictability.
    Description: The National Science Foundation EaSM2 Grant (AGS1243125) supported this work.
    Keywords: Atmosphere-ocean interaction ; Drought ; Paleoclimate ; Ensembles ; General circulation models ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2631-2646, doi:10.1175/JPO-D-17-0062.1.
    Description: Data from a mooring array deployed north of Denmark Strait from September 2011 to August 2012 are used to investigate the structure and variability of the shelfbreak East Greenland Current (EGC). The shelfbreak EGC is a surface-intensified current situated just offshore of the east Greenland shelf break flowing southward through Denmark Strait. This study identified two dominant spatial modes of variability within the current: a pulsing mode and a meandering mode, both of which were most pronounced in fall and winter. A particularly energetic event in November 2011 was related to a reversal of the current for nearly a month. In addition to the seasonal signal, the current was associated with periods of enhanced eddy kinetic energy and increased variability on shorter time scales. The data indicate that the current is, for the most part, barotropically stable but subject to baroclinic instability from September to March. By contrast, in summer the current is mainly confined to the shelf break with decreased eddy kinetic energy and minimal baroclinic conversion. No other region of the Nordic Seas displays higher levels of eddy kinetic energy than the shelfbreak EGC north of Denmark Strait during fall. This appears to be due to the large velocity variability on mesoscale time scales generated by the instabilities. The mesoscale variability documented here may be a source of the variability observed at the Denmark Strait sill.
    Description: Support for this work was provided by the Norwegian Research Council under Grant Agreement 231647 (LH and KV) and the Bergen Research Foundation under Grant BFS2016REK01 (KV). Additional funding was provided by the National Science Foundation under Grants OCE-0959381 and OCE-1558742 (RP).
    Keywords: Ocean ; Arctic ; Boundary currents ; Currents ; Stability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 1713-1721, doi:10.1175/JTECH-D-16-0258.1.
    Description: Data collected with acoustic Doppler current profilers installed on CTD rosettes and lowered through the water column [lowered ADCP (LADCP) systems] are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP-derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (heading, pitch, and roll). Of particular concern are the heading measurements, because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship. Heading data from dual-headed LADCP systems, which consist of upward- and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10°. In an attempt to reduce LADCP velocity errors, several dozen profiles of simultaneous LADCP and magnetometer/accelerometer data were collected in the Gulf of Mexico. Agreement between the LADCP profiles and simultaneous shipboard velocity measurements improves significantly when the former are processed with external attitude measurements. Another set of LADCP profiles with external attitude data was collected in a region of the Arctic Ocean where the horizontal geomagnetic field is too weak for the ADCP compasses to work reliably. Good agreement between shipboard velocity measurements and Arctic LADCP profiles collected at magnetic dip angles exceeding and processed with external attitude measurements indicate that high-quality velocity profiles can be obtained close to the magnetic poles.
    Description: Part of this research was made possible by a grant from the Gulf of Mexico Research Initiative to support the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG-2) research consortium. Funding for acquisition of the 2015 Arctic data was provided by NSF (1203473 and 1249133) and NOAA (NA15OAR4310155) under the NABOS-II program.
    Keywords: Ocean ; Arctic ; Algorithms ; In situ oceanic observations ; Measurements ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 9679-9702, doi:10.1175/JCLI-D-16-0707.1.
    Description: The North Atlantic atmospheric circulation response to the meridional shifts of the Gulf Stream (GS) path is examined using a large ensemble of high-resolution hemispheric-scale Weather Research and Forecasting Model simulations. The model is forced with a broad range of wintertime sea surface temperature (SST) anomalies derived from a lag regression on a GS index. The primary result of the model experiments, supported in part by an independent analysis of a reanalysis dataset, is that the large-scale quasi-steady North Atlantic circulation response is remarkably nonlinear about the sign and amplitude of the SST anomaly chosen over a wide range of GS shift scenarios. The nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation (NAO), the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the shift of the North Atlantic eddy-driven jet, which is reinforced, with nearly equal importance, by the high-frequency transient eddy feedback and the low-frequency wave-breaking events. Additional sensitivity simulations confirm that the nonlinearity of the circulation response is a robust feature found over the broad parameter space encompassing not only the varied SST but also the absence/presence of tropical influence, the varying lateral boundary conditions, and the initialization scheme. The result highlights the fundamental importance of the intrinsically nonlinear transient eddy dynamics and the eddy–mean flow interactions in generating the nonlinear downstream response to the meridional shifts in the Gulf Stream.
    Description: The authors are grateful for the support from NASA (NNX13AM59G) and the NSF (AGS-1355339, OCE-1419235).
    Description: 2018-05-07
    Keywords: North Atlantic Ocean ; Blocking ; North Atlantic Oscillation ; Atmosphere-ocean interaction ; Regional models ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 9359–9376, doi:10.1175/JCLI-D-14-00228.1.
    Description: Multidecadal variability of the Atlantic meridional overturning circulation (AMOC) is examined based on a comparison of the AMOC streamfunctions in depth and in density space, in a 700-yr present-day control integration of the fully coupled Community Climate System Model, version 3. The commonly used depth-coordinate AMOC primarily exhibits the variability associated with the deep equatorward transport that follows the changes in the Labrador Sea deep water formation. On the other hand, the density-based AMOC emphasizes the variability associated with the subpolar gyre circulation in the upper ocean leading to the changes in the Labrador Sea convection. Combining the two representations indicates that the ~20-yr periodicity of the AMOC variability in the first half of the simulation is primarily due to an ocean-only mode resulting from the coupling of the deep equatorward flow and the upper ocean gyre circulation near the Gulf Stream and North Atlantic Current. In addition, the density-based AMOC reveals a gradual change in the deep ocean associated with cooling and increased density, which is likely responsible for the transition of AMOC variability from strong ~20-yr oscillations to a weaker red noise–like multidecadal variability.
    Description: Support from the NOAA Climate Program Office (Grant NA10OAR4310202 and NA13OAR4310139) and NSF EaSM2 (OCE1242989) is gratefully acknowledged.
    Description: 2015-06-15
    Keywords: North Atlantic Ocean ; Meridional overturning circulation ; Ocean circulation ; Thermocline circulation ; Climate variability ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(7) (2019): 3927-3935, doi: 10.1029/2018GL081593.
    Description: Climate model simulations of the summer South Asian monsoon predict increased rainfall in response to anthropogenic warming. However, instrumental data show a decline in Indian rainfall in recent decades, underscoring the critical need for additional, independent records of past monsoon variability. Here, we present new reconstructions of annual summer South Asian Monsoon circulation over the past 250 years, based on the geochemical barium‐calcium signature of dust present in Red Sea corals. These records reveal how monsoon circulation has evolved with warming climate and indicate a significant multi‐century long monsoon intensification, with decreased multidecadal variance. Stronger monsoon circulation would have increased the moisture transport from the Arabian Sea and Bay of Bengal over the Indian subcontinent. If these trends continue, the monsoon circulation and associated moisture transport and precipitation will remain strong and stable for several decades.
    Description: We thank Editor Valerie Trouet and two anonymous reviewers for their constructive comments. We gratefully acknowledge Justin Ossolinski for assistance during core drilling; Maureen Auro, Laura Robinson, and Tom Marchitto for use of lab space and for technical advice; Margaret Sulanowska for providing XRD analysis of dust samples; and Sujata Murty and Ryan Davis for assistance in the lab. We thank Falmouth Hospital for use of X‐ray equipment. We acknowledge the use of the NSF‐supported WHOI ICP‐MS facility and thank Scot Birdwhistell for his assistance. This research was supported by grants to K. A. H. from NSF award OCE‐1031288 and KAUST award USA00002, and by a WHOI Postdoctoral Fellowship awarded to S. P. B. All data presented in this manuscript will be made publicly available online through the NOAA NCDC Paleoclimatology data archive (https://www.ncdc.noaa.gov/data‐access/paleoclimatology‐data/).
    Description: 2019-09-28
    Keywords: Paleoclimatology ; Climate variability ; Aerosols and particles ; Major and trace element geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(14), (2019): 8572-8581, doi: 10.1029/2019GL083039.
    Description: As Arctic temperatures rise at twice the global rate, sea ice is diminishing more quickly than models can predict. Processes that dictate Arctic cloud formation and impacts on the atmospheric energy budget are poorly understood, yet crucial for evaluating the rapidly changing Arctic. In parallel, warmer temperatures afford conditions favorable for productivity of microorganisms that can effectively serve as ice nucleating particles (INPs). Yet the sources of marine biologically derived INPs remain largely unknown due to limited observations. Here we show, for the first time, how biologically derived INPs were likely transported hundreds of kilometers from deep Bering Strait waters and upwelled to the Arctic Ocean surface to become airborne, a process dependent upon a summertime phytoplankton bloom, bacterial respiration, ocean dynamics, and wind‐driven mixing. Given projected enhancement in marine productivity, combined oceanic and atmospheric transport mechanisms may play a crucial role in provision of INPs from blooms to the Arctic atmosphere.
    Description: We sincerely thank the U.S. Coast Guard and crew of the Healy for assistance with equipment installation and guidance, operation of the underway and CTD systems, and general operation of the vessel during transit and at targeted sampling stations. We would also like to thank Allan Bertram, Meng Si, Victoria Irish, and Benjamin Murray for providing INP data from their previous studies. J. M. C., R. P., P. L., L. T., and E. B. were funded by the National Oceanic and Atmospheric Administration (NOAA)’s Arctic Research Program. J. C. was supported by the NOAA Experiential Research & Training Opportunities (NERTO) program. T. A. and N. C. were supported through the NOAA Earnest F. Hollings Scholarship program. A. P. was funded by the National Science Foundation under Grant PLR‐1303617. Russel C. Schnell and Michael Spall are acknowledged for insightful discussions during data analysis and interpretation. There are no financial conflicts of interest for any author. INP data are available in the supporting information, while remaining DBO‐NCIS data presented in the manuscript are available online (at https://www2.whoi.edu/site/dboncis/).
    Description: 2020-01-15
    Keywords: Arctic ; Ice nucleation ; Phytoplankton bloom ; Aerosol‐cloud interactions ; Arctic aerosol
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...