ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,683,800)
  • 2015-2019  (1,187,951)
  • 2000-2004  (495,849)
  • Biology  (1,178,253)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (511,839)
Collection
  • Books  (78)
  • Articles  (1,683,800)
Years
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 1-17 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The discovery that genes in the major histocompatibility complex (MHC) play an important role in the immune response depended on the chance interaction of several unrelated events. The first, and most important, was the decision by Michael Sela to synthesize a series of branched, multichain, synthetic polypeptides based on a backbone of poly-l-lysine. The prototype compound, (T,G)-A-L, was tipped with short random sequences of tyrosine and glutamic acid. This resulted in a restricted range of antigenic determinants composed of only two or three amino acids with a variable length-ideal for binding to the peptide binding groove of MHC class II molecules. The second was the decision by John Humphrey to immunize various strains of rabbits with this synthetic polypeptide. Two of these rabbit strains showed very large quantitative differences in antibody response to (T,G)-A-L. In transferring this system to inbred mouse strains, the third bit of good fortune was the availability at the National Institute of Medical Research, in Mill Hill (London), of the CBA (H2k) and C57 (H2b) strains. The H2b haplotype is the only one mediating a uniform high antibody response to (T,G)-A-L. The fourth critical ingredient was the availability of numerous congenic and H2 recombinant inbred strains of mice produced earlier by Snell, Stimpfling, Shreffler, and Klein. A search for congenic pairs of mice expressing the responder and nonresponder H2 haplotypes on the same background revealed that these strains responded as a function of their H2 haplotype, not of their inbred background. Extensive studies in a variety of inbred strains carrying recombinant H2 haplotypes, as well as a four-point linkage cross, mapped immune response to (T,G)A-L within the murine MHC, between the K and Ss loci. The demonstration that stimulation in the mixed lymphocyte reaction (MLR) mapped to the same region quickly led to attempts to produce antisera in congenic H2 recombinant strain combinations. These antisera identified I-region associated (Ia) antigens. Immunoprecipitation and blocking studies showed that the gene products controlling specific immune responses, the mixed lymphocyte reaction, and the structure of Ia antigens were one and the same-now designated as the I-A MHC class II molecules. These antisera and inbred strains enabled Unanue to demonstrate the peptide binding function of class II MHC molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 165-184 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Ligation of the T cell antigen receptor (TCR) stimulates protein tyrosine kinases (PTKs), which regulate intracellular calcium and control the activity of protein kinase C (PKC) isozymes. PTKs activated by antigen receptors and costimulatory molecules also couple to phosphatidylinositol-3 kinase (PI3K) and control the activity of Ras- and Rho-family GTPases. T cell signal transduction is triggered physiologically by antigen in the context of antigen presenting cells (APC). The formation of stable and prolonged contacts between T cells and APCs is not neccessary to initiate T cell signaling but is required for effective T cell proliferation and differentiation. The stabilization of the T cell/ APC conjugate is regulated by intracellular signals induced by antigen receptors and costimulators. These coordinate the regulation of the actin and microtubule cytoskeleton and organize a specialized signaling zone that allows sustained TCR signaling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 245-273 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The potential to harness the potency and specificity of the immune system underlies the growing interest in cancer immunotherapy. One such approach uses bone marrow-derived dendritic cells, phenotypically distinct and extremely potent antigen-presenting cells, to present tumor-associated antigens and thereby generate tumor-specific immunity. Support for this strategy comes from animal studies that have demonstrated that dendritic cells, when loaded ex vivo with tumor antigens and administered to tumor-bearing hosts, can elicit T cell-mediated tumor destruction. These observations have led to clinical trials designed to investigate the immunologic and clinical effects of antigen-loaded dendritic cells administered as a therapeutic vaccine to patients with cancer. In the design and conduct of such trials, important considerations include antigen selection, methods for introducing the antigen into MHC class I and II processing pathways, methods for isolating and activating dendritic cells, and route of administration. Although current dendritic cell-based vaccination methods are cumbersome, promising results from clinical trials in patients with malignant lymphoma, melanoma, and prostate cancer suggest that immunotherapeutic strategies that take advantage of the antigen presenting properties of dendritic cells may ultimately prove both efficacious and widely applicable to human tumors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 347-366 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Allergic diseases affect approximately one third of the general population. This class of disease, characterized by elevated serum IgE levels and hypersensitivity to normally innocuous antigen, can manifest in practically any mucosal tissue or as a systemic response. A few examples of serious allergic diseases include asthma, dermatitis, bee sting allergy, food allergy, conjunctivitis, and severe systemic anaphylaxis. Taken together, allergic diseases constitute one of the major problems of modern day medicine. A considerable portion of the healthcare budget is expended in the treatment of allergic disease, and morbidity rates of inner city asthmatics are rising steadily. Due to the enormity of the problem, there has been a worldwide effort to identify factors that contribute to the etiology of allergic diseases. Epidemiologic studies of multigeneration families and large numbers of twins clearly indicate a strong genetic component to atopic diseases. At least two independently segregating diseasesusceptibility genes are thought to come together with environmental factors to result in allergic inflammation in a particular tissue. On the basis of the strong genetic studies, multiple groups have attempted to identify disease-susceptibility genes via either a candidate gene approach or by genome-wide scans. Both of these approaches have implicated multiple regions in the human and mouse genomes, which are currently being evaluated as harboring putative atopy genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The human thymus is a complex chimeric organ comprised of central (thymic epithelial space) and peripheral (perivascular space) components that functions well into adult life to produce naive T lymphocytes. Recent advances in identifying thymic emigrants and development of safe methods to study thymic function in vivo in adults have provided new opportunities to understand the role that the human thymus plays in immune reconstitution in aging, in bone marrow transplantation, and in HIV-1 infection. The emerging concept is that there are age-dependent contributions of thymic emigrants and proliferation of postthymic T cells to maintain the peripheral T cell pool and to contribute to T cell regeneration, with the thymus contributing more at younger ages and peripheral T cell expansion contributing more in older subjects. New studies have revealed a dynamic interplay between postnatal thymus output and peripheral T cell pool proliferation, which play important roles in determining the nature of immune reconstitution in congenital immunodeficiency diseases, in bone marrow transplantation, and in HIV-1 infection. In this paper, we review recent data on human postnatal thymus function that, taken together, support the notion that the human thymus is functional well into the sixth decade and plays a role throughout life to optimize human immune system function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 709-737 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Antibodies can completely suppress or enhance the antibody response to their specific antigen by several hundredfold. Immunoglobulin M (IgM) enhances antibody responses via the complement system, and complement activation by IgM probably starts the chain of events leading to antibody responses to suboptimal antigen doses. IgG can enhance primary antibody responses in the absence of the complement system and seems to be dependent on Fc receptors for IgG (FcgammaRs). IgE enhances antibody responses via the low-affinity receptor for IgE (FcepsilonRII/CD23). The precise effector mechanisms that cause enhancement are not known, but direct B-cell signaling, antigen presentation, and increased follicular localization are all possibilities. IgG, IgE, and IgM may also suppress antibody responses when used in certain immunization regimes, and it seems reasonable that an important mechanism behind suppression is the masking of antigenic epitopes by antibodies. In addition, FcgammaRIIB, which contains a cytoplasmic inhibitory motif, acts as a negative regulator of antibody responses. This receptor, however, may prevent the antibody responses from exceeding a certain level rather than causing complete suppression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 767-811 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 927-974 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The development and widespread use of vaccines against infectious agents have been a great triumph of medical science. One reason for the success of currently available vaccines is that they are capable of inducing long-lived antibody responses, which are the principal agents of immune protection against most viruses and bacteria. Despite these successes, vaccination against intracellular organisms that require cell-mediated immunity, such as the agents of tuberculosis, malaria, leishmaniasis, and human immunodeficiency virus infection, are either not available or not uniformly effective. Owing to the substantial morbidity and mortality associated with these diseases worldwide, an understanding of the mechanisms involved in generating long-lived cellular immune responses has tremendous practical importance. For these reasons, a new form of vaccination, using DNA that contains the gene for the antigen of interest, is under intensive investigation, because it can engender both humoral and cellular immune responses. This review focuses on the mechanisms by which DNA vaccines elicit immune responses. In addition, a list of potential applications in a variety of preclinical models is provided.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Physical detection of antigen-specific CD4 T cells has revealed features of the in vivo immune response that were not appreciated from in vitro studies. In vivo, antigen is initially presented to naive CD4 T cells exclusively by dendritic cells within the T cell areas of secondary lymphoid tissues. Anatomic constraints make it likely that these dendritic cells acquire the antigen at the site where it enters the body. Inflammation enhances in vivo T cell activation by stimulating dendritic cells to migrate to the T cell areas and display stable peptide-MHC complexes and costimulatory ligands. Once stimulated by a dendritic cell, antigen-specific CD4 T cells produce IL-2 but proliferate in an IL-2-independent fashion. Inflammatory signals induce chemokine receptors on activated T cells that direct their migration into the B cell areas to interact with antigen-specific B cells. Most of the activated T cells then die within the lymphoid tissues. However, in the presence of inflammation, a population of memory T cells survives. This population is composed of two functional classes. One recirculates through nonlymphoid tissues and is capable of immediate effector lymphokine production. The other recirculates through lymph nodes and quickly acquires the capacity to produce effector lymphokines if stimulated. Therefore, antigenic stimulation in the presence of inflammation produces an increased number of specific T cells capable of producing effector lymphokines throughout the body.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 19 (2001), S. 163-196 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Rheumatoid arthritis (RA), a systemic disease, is characterized by a chronic inflammatory reaction in the synovium of joints and is associated with degeneration of cartilage and erosion of juxta-articular bone. Many pro-inflammatory cytokines including TNFalpha, chemokines, and growth factors are expressed in diseased joints. The rationale that TNFalpha played a central role in regulating these molecules, and their pathophysiological potential, was initially provided by the demonstration that anti-TNFalpha antibodies added to in vitro cultures of a representative population of cells derived from diseased joints inhibited the spontaneous production of IL-1 and other pro-inflammatory cytokines. Systemic administration of anti-TNFalpha antibody or sTNFR fusion protein to mouse models of RA was shown to be anti-inflammatory and joint protective. Clinical investigations in which the activcity of TNFalpha in RA patients was blocked with intravenously administered infliximab, a chimeric anti-TNFalpha monoclonal antibody (mAB), has provided evidence that TNF regulates IL-6, IL-8, MCP-1, and VEGF production, recruitment of immune and inflammatory cells into joints, angiogenesis, and reduction of blood levels of matrix metalloproteinases-1 and -3. Randomized, placebo-controlled, multi-center clinical trials of human TNFalpha inhibitors have demonstrated their consistent and remarkable efficacy in controlling signs and symptoms, with a favorable safety profile, in approximately two thirds of patients for up to 2 years, and their ability to retard joint damage. Infliximab (a mAB), and etanercept (a sTNF-R-Fc fusion protein) have been approved by regulatory authorities in the United States and Europe for treating RA, and they represent a significant new addition to available therapeutic options.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...