ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy  (4)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (2)
  • Taylor & Francis  (3)
  • Molecular Diversity Preservation International
  • Nature Publishing Group
  • 2015-2019  (3)
  • 2005-2009  (2)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: We have illustrated the key results of the Differential SAR Interferometry (DInSAR) analysis focused on the ground deformation of Long Valley caldera and Mono Basin, eastern California. In particular, we have applied the DInSAR algorithm referred to as Small BAseline Subset (SBAS) approach and processed 21 SAR images, spanning the time interval from 1992 to 2000, acquired from descending arbits by the ERS-1 and ERS-2 sensors of the European Space Agency (ESA). The deformation affecting the resurgent dome of Long Valley caldera has been highlighted as well as the previously unreported subsidence of the Pahoa island, located in Mono Lake.
    Description: Published
    Description: 439–441
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Ground deformation ; Long Valley caldera ; Mono Basin ; satellite radar ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-14
    Description: In case of a seismic event, a fast and draft damage map of the hit urban areas can be very useful, in particular when the epicentre of the earthquake is located in remote regions, or the main communication systems are damaged. Our aim is to analyse the capability of remote sensing techniques for damage detection in urban areas and to explore the combined use of radar (SAR) and optical satellite data. Two case studies have been proposed: Izmit (1999; Turkey) and Bam (2003; Iran). Both areas have been affected by strong earthquakes causing heavy and extended damage in the urban settlements close to the epicentre. Different procedures for damage assessment have been successfully tested, either to perform a pixel by pixel classification or to assess damage within homogeneous extended areas. We have compared change detection capabilities of different features extracted from optical and radar data, and analysed the potential of combining measurements at different frequency ranges. Regarding the Izmit case, SAR features alone have reached 70% of correct classification of damaged areas and 5 m panchromatic optical images have given 82%; the fusion of SAR and optical data raised up to 89% of correct pixel‐to‐pixel classification. The same procedures applied to the Bam test case achieved about 61% of correct classification from SAR alone, 70% from optical data, while data fusion reached 76%. The results of the correlation between satellite remote sensing and ground surveys data have been presented by comparing remotely change detection features averaged within homogeneous blocks of buildings with ground survey data.
    Description: Published
    Description: 4433 - 4447
    Description: partially_open
    Keywords: InSAR ; damage detection ; Optical data ; Urban areas ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 807089 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this study the integration of Sentinel-1 InSAR (Interferometric Synthetic Aperture Radar) and GPS (Global Positioning System) data was performed to estimate the three components of the ground deformation field due to the Mw 6.0 earthquake occurred on August 24th, 2014, in the Napa Valley, California, USA. The SAR data were acquired by the Sentinel-1 satellite on August 7th and 31st respectively. In addition, the GPS observations acquired during the whole month of August were analyzed. These data were obtained from the Bay Area Regional Deformation Network, the UNAVCO and the Crustal Dynamics Data Information System online archives. The data integration was realized by using a Bayesian statistical approach searching for the optimal estimation of the three deformation components. The experimental results show large displacements caused by the earthquake characterized by a predominantly NW-SE strike-slip fault mechanism.
    Description: The research has been supported by the “Marco Polo” project by the University of Bologna (UNIBO), the Spanish Ministry of Economy and Competitiveness research project ESP2013-47780-557 C2-1-R and the EU 7th FP MED-SUV project (contract 308665). It is a contribution to the Moncloa Campus of International Excellence.
    Description: Published
    Description: 1-13
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: SAR interferometry ; GPS ; Sentinel-1 ; Earthquake ; 3D displacement ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We applied the Small Baseline Subset multi-temporal InSAR technique (SBAS) to two SAR datasets acquired from 2003 up to 2013 by Envisat (ESA, European Space Agency) and COSMO-SkyMed (ASI, Italian Space Agency) satellites to investigate spatial and temporal patterns of land subsidence in the Sibari Plain (Southern Italy). Subsidence processes (up to ~20 mm/yr) were investigated comparing geological, hydrogeological, and land use information with interferometric results. We suppose a correlation between subsidence and thickness of the Plio-Quaternary succession suggesting an active role of the isostatic compensation. Furthermore, the active back thrusting in the Corigliano Gulf could trigger a flexural subsidence mechanism even if fault activity and earthquakes do not seem play a role in the present subsidence. In this context, the compaction of Holocene deposits contributes to ground deformation. Despite the rapid urbanization of the area in the last 50 years, we do not consider the intensive groundwater pumping and related water table drop as the main triggering cause of subsidence phenomena, in disagreement with some previous publications. Our interpretation for the deformation fields related to natural and anthropogenic factors would be a comprehensive and exhaustive justification to the complexity of subsidence processes in the Sibari Plain.
    Description: PON (Operational National Plan) 2007–2013 from MIUR (Italian Research Ministry of Research) Project AMICUS (Study for the environmental protection and the mitigation of Anthropogenic Pollution In the Coastal Environment of selected areas of Calabria; ID: PON01_ 02818) - COSMO-SkyMed® PRODUCTS, © ASI (Italian Space Agency)—provided under license of ASI in the framework of the S3 Project “Short term earthquake prediction and preparation” (DPC-INGV, 2013). The Envisat images are provided by ESA (European Space Agency) under the CAT.1P 5605
    Description: Published
    Description: 16004–16023
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: SBAS-InSAR ; Sibari Plain ; subsidence ; geology ; anthropic processes ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...