ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,748)
  • Data
  • MDPI  (7,748)
  • 2015-2019  (7,748)
  • 2005-2009
  • Chemistry and Pharmacology  (7,748)
Collection
  • Articles  (7,748)
  • Data
Years
Year
Journal
  • 1
    Publication Date: 2015-08-11
    Description: In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS extractive phase has also been evaluated. The extraction capability of the capillary columns has been tested for different organic pollutants, nitrogen heterocyclic compounds and polycyclic aromatic compounds (PAHs). The results indicated that the use of the c-CNTs-PDMS capillary columns improve pyriproxyfen and mainly PAH extraction. Triazines were better extracted by unmodified TRB-35 and modified c-CNTs-PDMSTRB-5. The results showed that the extraction capability of the c-CNT capillary columns depends not only on the polarity of the analytes (as it occurs with PDMS columns) but also on the interactions that the analytes can establish with the immobilized c-CNTs on the PDMS columns. The extraction efficiency has been evaluated on the basis of the preconcentration rate that can be achieved, and, in this sense, the best c-CNTs-PDMS capillary column for each group of compounds can be proposed.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-04
    Description: The use of a novel micro pressurized liquid extraction (µPLE) method for the isolation of 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) from various solid samples is explored. The technique employs rapid heating in a single static extraction mode to remove analytes in a matter of seconds from 5–10 mg samples using only 125 µL of solvent. For example, results show that 30 s extractions with toluene at 200 °C produce respective PAH recovery ranges of 90%–130% and 88%–114% from samples of soil and smoked chicken. Comparatively, solids containing significant amounts of biochar were more challenging to extract from. For instance, when using a pure biochar sample matrix, recoveries for the 16 PAHs range from only 33%–66% after 60 s of extraction with toluene at 200 °C. Overall, these extraction results agree very well with those reported when using conventional methods on similar samples. Therefore, the findings indicate that µPLE can potentially provide an alternative sample preparation method for PAHs that is both very rapid and requires little solvent.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-05
    Description: Large-size (4–5 µm) superficially porous particles yield lower plate heights (e.g., the minimal reduced plate height or hmin ≈ 1.5) than fully porous particles of a similar size when packed into large-bore columns. This property allows for better chromatographic performance without the higher pressures required for smaller particles. This study explores the use of such particles in microfluidic LC columns where materials and fitting pressure limits can constrain the size of particle used. The theoretically predicted performance improvements compared to fully porous particles were not demonstrated in capillary columns (with hmin ≈ 2 for both particle types), in agreement with previous studies that examined smaller superficially porous particles. Microfluidic columns were then compared to capillary columns. Capillary columns significantly outperformed microfluidic columns due to imperfections imposed by microfluidic channel asymmetry and world-to-chip connection at the optimal flow rate; however, superficially porous particles packed in microfluidic LC columns had flatter plate height versus flow rate curves indicating potential for better performance at high reduced velocities.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-15
    Description: Although globotetraosylceramide (Gb4) is only recognized by a single member of the verotoxin family namely, the pig edema disease toxin (VT2e), removal of the acetyl group from the terminal N-acetyl hexosamine of Gb4 to generate the free amino sugar containing species (aminoGb4) results in the generation of a glycolipid preferentially recognized by all members of the verotoxin family (i.e., VT1, VT2, VT2c, and VT2e). GT3, a site-specific mutant of VT2e, in which Gb4 recognition is lost but Gb3 binding is retained, also binds aminoGb4. We have now compared the binding of VT1, VT2, VT2e, and GT3 to a series of aminoGb4 derivatives using a TLC overlay technique. DimethylaminoGb4 is bound by VT1 and VT2 but not VT2e or GT3; formylaminoGb4 binds all toxins but poorly to VT2 and preferentially VT2e; trifluoroacetylaminoGb4 binds only VT2e and GT3; isopropylaminoGb4 binds VT1 and poorly to VT2; benzylaminoGb4 binds all four toxins. Thus, there is a marked distinction between the permissible amino substitutions for VT1 and VT2e binding. GT3 is a hybrid between these in that, according to the substitution, it behaves similarly either to VT1 or to VT2e. For each species, GT3 does not however, show a hybrid binding between that of VT1 and VT2e. Analysis of the binding as a function of pH shows opposite effects for VT1 and VT2e: decreased pH increases VT1, but decreases VT2e receptor glycolipid binding.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-23
    Description: Fulvic (FAs) and humic acids (HAs) are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF) of FAs and HAs is observed to be concentration dependent in low ionic strength solutions whereas the corresponding flow FFF fractograms in high ionic strength solutions are concentration independent. Dynamic light scattering (DLS) also reveals insight into the conductivity-dependent behavior of humic substances (HSs). Four particle size ranges for FAs and humic acid aggregates are examined: (1) 〈10 nm; (2) 10 nm–6 µm; (3) 6–100 µm; and (4) >100 µm. Representative components of the different size ranges are observed to dynamically coexist in solution. The character of the various aggregates observed—such as random-extended-coiled macromolecules, hydrogels, supramolecular, and micellar—as influenced by electrolytic conductivity, is discussed. The disaggregation/aggregation of HSs is proposed to be a dynamic equilibrium process for which the rate of aggregate formation is controlled by the electrolytic conductivity of the solution.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-26
    Description: Magnetic nanoparticles (MNPs) exhibit unique magnetic properties making them ideally suited for a variety of biomedical applications. Depending on the desired magnetic effect, MNPs must meet special magnetic requirements which are mainly determined by their structural properties (e.g., size distribution). The hyphenation of chromatographic separation techniques with complementary detectors is capable of providing multidimensional information of submicron particles. Although various methods have already been combined for this approach, so far, no detector for the online magnetic analysis was used. Magnetic particle spectroscopy (MPS) has been proven a straightforward technique for specific quantification and characterization of MNPs. It combines high sensitivity with high temporal resolution; both of these are prerequisites for a successful hyphenation with chromatographic separation. We demonstrate the capability of MPS to specifically detect and characterize MNPs under usually applied asymmetric flow field-flow fractionation (A4F) conditions (flow rates, MNP concentration, different MNP types). To this end MPS has been successfully integrated into an A4F multidetector platform including dynamic ligth scattering (DLS), multi-angle light scattering (MALS) and ultraviolet (UV) detection. Our system allows for rapid and comprehensive characterization of typical MNP samples for the systematic investigation of structure-dependent magnetic properties. This has been demonstrated by magnetic analysis of the commercial magnetic resonance imaging (MRI) contrast agent Ferucarbotran (FER) during hydrodynamic A4F fractionation.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-26
    Description: Kratom is a tree planted in Southeast Asia, including Thailand, Malaysia, Myanmar (Burma) and elsewhere in the region. A long history of usage and abuse of kratom has led to the classification of kratom as a controlled substance in its native Thailand and other Southeast Asian countries. However, kratom is not controlled in the United States, and the wide availability of kratom on the Internet and in the streets has led to its emergence as an herbal drug of misuse. With the increasing popularity of kratom, efficient protocols are needed to detect kratom use. In this study, a rapid method for the analysis of kratom compounds, mitragynine and 7-hydroxymitragynine, in human urine has been developed and validated using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The chromatographic system employed a 2.6-μm 100 mm × 2.1 mm phenyl-hexyl analytical column and gradient elution with a 0.4-mL/min flow rate of water and acetonitrile as mobile phases. A triple quadrupole mass spectrometer was used as the detector for data acquisition. The analyst was the quantification software. The established method demonstrated linearity of >0.99 for both analytes, and low detection limits were obtained down to 0.002581 ng/mL for mitragynine and 0.06910 ng/mL for 7-hydroxymitragynine. The validated method has been utilized for clinical analysis of urine for the purpose of mitragynine and 7-hydroxymitragynine detection.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-05-13
    Description: Security control is becoming a major global issue in strategic locations, such as airports, official buildings, and transit stations. The agencies responsible for public security need powerful and sensitive tools to detect warfare agents and explosives. Volatile signature detection is one of the fastest and easiest ways to achieve this task. However, explosive chemicals have low volatility making their detection challenging. In this research, we developed and evaluated fast chromatographic methods to improve the characterization of volatile signatures from explosives samples. The headspace of explosives was sampled with solid phase micro-extraction fiber (SPME). Following this step, classical gas chromatography (GC) and comprehensive two-dimensional GC (GC×GC) were used for analysis. A fast GC approach allows the elution temperature of each analyte to be decreased, resulting in decreased thermal degradation of sensitive compounds (e.g., nitro explosives). Using fast GC×GC, the limit of detection is further decreased based on the cryo-focusing effect of the modulator. Sampling of explosives and chromatographic separation were optimized, and the methods then applied to commercial explosives samples. Implementation of fast GC methods will be valuable in the future for defense and security forensics applications.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-04-03
    Description: Using magnetic particles as a solid-phase extraction system is the most frequently used micro-technique for DNA isolation. Particles with a complete covering of magnetic cores by a polymer are hence preferred. Quantitative polymerase chain reaction (qPCR) was used for the evaluation of the polymer coating efficiency of hydrophilic magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) and poly(glycidyl methacrylate) (PGMA) microspheres with/without carboxyl groups. The inhibition effect of magnetic microspheres was identified by the shift in Cq values (ΔCq) after the addition of different amounts of microspheres to PCR mixtures. With the increase of microsphere concentrations, the shift in Cq values to higher values was usually observed. P(HEMA-co-GMA) microspheres containing carboxyl groups extinguished the fluorescence at concentrations over 2 mg mL−1 in a PCR mixture without any influence on the synthesis of PCR products. No PCR products (inhibition of DNA amplification) were detected in the presence of more than 0.8 mg mL−1 in the PCR mixture of PGMA microspheres. Atomic force microscopy (AFM) was used for the determination of the surface morphology of the microspheres. The microspheres were spherical, and their surface was non-porous.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-06
    Description: A novel method for the labeling and rapid separation of morphine, morphine-3-beta-d-glucuronide (M3G) and morphine-6-beta-d-glucuronide (M6G) in human urine employing a new boronic acid functionalized squarylium dye (SQ-BA3) and capillary electrophoresis with laser induced fluorescence detection (CE-LIF) is described. The spectrochemical properties, solution stability, pH range, and mechanisms for interactions with morphine and its metabolites were first established for SQ-BA3, followed by optimization of an on-column labeling procedure and CE-LIF method. SQ-BA3 itself was shown to be unstable and weakly fluorescent in aqueous buffers due to aggregate formation. However, SQ-BA3 showed a relative stability and dramatic increase in fluorescence intensity upon the addition of morphine, M3G, and M6G. Because of the low background fluorescence of this dye, on-column labeling was feasible, leading to a simple and rapid analytical method with the potential for clinical applications.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...