ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Press  (96,635)
  • American Institute of Physics (AIP)
  • 2015-2019  (83,672)
  • 2005-2009  (29,371)
  • 1985-1989  (41,410)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 11 (2015): 1-12, doi:10.1016/j.celrep.2015.03.049.
    Description: Although recent research revealed an impact of westernization on diversity and composition of the human gut microbiota, the exact consequences on metacommunity characteristics are insufficiently understood, and the underlying ecological mechanisms have not been elucidated. Here, we have compared the fecal microbiota of adults from two non-industrialized regions in Papua New Guinea (PNG) with that of United States (US) residents. Papua New Guineans harbor communities with greater bacterial diversity, lower inter-individual variation, vastly different abundance profiles, and bacterial lineages undetectable in US residents. A quantification of the ecological processes that govern community assembly identified bacterial dispersal as the dominant process that shapes the microbiome in PNG but not in the US. These findings suggest that the microbiome alterations detected in industrialized societies might arise from modern lifestyle factors limiting bacterial dispersal, which has implications for human health and the development of strategies aimed to redress the impact of westernization.
    Description: This study was partly funded by BioGaia AB. BioGaia had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. A portion of this research is part of the Microbiomes in Transition Initiative at Pacific Northwest National Laboratory (PNNL). This research was conducted under the Laboratory Directed Research and Development Program at PNNL, a multi-program national laboratory operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in iScience 1 (2018): 24-34, doi:10.1016/j.isci.2018.01.001.
    Description: The color and pattern changing abilities of octopus, squid, and cuttlefish via chromatophore neuro-muscular organs are unparalleled. Cuttlefish and octopuses also have a unique muscular hydrostat system in their skin. When this system is expressed, dermal bumps called papillae disrupt body shape and imitate the fine texture of surrounding objects, yet the control system is unknown. Here we report for papillae: (1) the motoneurons and the neurotransmitters that control activation and relaxation, (2) a physiologically fast expression and retraction system, and (3) a complex of smooth and striated muscles that enables long-term expression of papillae through sustained tension in the absence of neural input. The neural circuits controlling acute shape-shifting skin papillae in cuttlefish show homology to the iridescence circuits in squids. The sustained tension in papillary muscles for long-term camouflage utilizes muscle heterogeneity and points toward the existence of a “catch-like” mechanism that would reduce the necessary energy expenditure.
    Description: This work was funded by an AFOSR grant no. FA9550-14-1-0134, Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grant (097814/Z/11/Z) to P.T.G-B., and a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (BBSRC, BB/L024667/1) to T.J.W.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 25 (2018): 1281–1291, doi:10.1016/j.celrep.2018.10.005.
    Description: Morphogenesis and mechanoelectrical transduction of the hair cell mechanoreceptor depend on the correct assembly of Usher syndrome (USH) proteins into highly organized macromolecular complexes. Defects in these proteins lead to deafness and vestibular areflexia in USH patients. Mutations in a non-USH protein, glutaredoxin domain-containing cysteine-rich 1 (GRXCR1), cause non-syndromic sensorineural deafness. To understand the deglutathionylating enzyme function of GRXCR1 in deafness, we generated two grxcr1 zebrafish mutant alleles. We found that hair bundles are thinner in homozygous grxcr1 mutants, similar to the USH1 mutants ush1c (Harmonin) and ush1ga (Sans). In vitro assays showed that glutathionylation promotes the interaction between Ush1c and Ush1ga and that Grxcr1 regulates mechanoreceptor development by preventing physical interaction between these proteins without affecting the assembly of another USH1 protein complex, the Ush1c- Cadherin23-Myosin7aa tripartite complex. By elucidating the molecular mechanism through which Grxcr1 functions, we also identify a mechanism that dynamically regulates the formation of Usher protein complexes.
    Description: This work was supported by grants from the NIH (DC004186, OD011195, and HD22486).
    Keywords: Grxcr1 ; Usher syndrome ; Hair cell ; Stereocilia ; Glutathionylation ; Harmonin ; Sans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Current Biology 27 (2017): 854–859, doi:10.1016/j.cub.2017.01.050.
    Description: Our visual system allows us to rapidly identify and intercept a moving object. When this object is far away, we base the trajectory on the target’s location relative to an external frame of reference [1]. This process forms the basis for the constant bearing angle (CBA) model, a reactive strategy that ensures interception since the bearing angle, formed between the line joining pursuer and target (called the range vector) and an external reference line, is held constant [2; 3 ; 4]. The CBA model may be a fundamental and widespread strategy, as it is also known to explain the interception trajectories of bats and fish [5 ; 6]. Here, we show that the aerial attack of the tiny robber fly Holcocephala fusca is consistent with the CBA model. In addition, Holcocephala fusca displays a novel proactive strategy, termed “lock-on” phase, embedded with the later part of the flight. We found the object detection threshold for this species to be 0.13°, enabled by an extremely specialized, forward pointing fovea (∼5 ommatidia wide, interommatidial angle Δφ = 0.28°, photoreceptor acceptance angle Δρ = 0.27°). This study furthers our understanding of the accurate performance that a miniature brain can achieve in highly demanding sensorimotor tasks and suggests the presence of equivalent mechanisms for target interception across a wide range of taxa.
    Description: This work was funded by the Air Force Office of Scientific Research (FA9550-15-1-0188 to P.T.G.-B. and K.N. and FA9550-15-1-0068 to D.G.S.), an Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grant (097814/Z/11/Z) to P.T.G.-B., a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (BBSRC, BB/L024667/1) to T.J.W., a Royal Society International Exchange Scheme grant to P.T.G.-B. (75166), a Swedish Research Council grant (2012-4740) to K.N., and a Shared Equipment Grant from the School of Biological Sciences (University of Cambridge, RG70368).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4455-4461 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Intermolecular potentials for Ar and Kr interacting with HBr are obtained by least-squares fitting of potential parameters to data obtained from the molecular-beam microwave spectra of the Ar–HBr and Kr–HBr van der Waals complexes. The equilibrium geometry is linear Rg–H–Br in each case, but there are substantial secondary minima at the linear Rg–Br–H geometries; for Ar–HBr, the secondary minimum is only about 5 cm−1 shallower than the primary minimum. This potential feature is found to explain the anomalous H/D isotope effects in centrifugal distortion constants that have been observed for the Rg–HBr complexes. It is predicted that Ar–HBr will have a very low-energy bending state, only 11 cm−1 above the ground state, arising from the secondary minimum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4477-4484 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Excited rotational level dependence of the external magnetic field effects both on intensity and on decay of fluorescence of pyrazine vapor has been carefully examined for the zero-point vibrational level in S1 with a field strength of 0–170 G. The magnetic quenching of the slow fluorescence becomes more effective with increasing rotational quantum number J' of the excited level, and the field strength at which the amount of fluorescence quenching becomes one-half of the total amount of quenching at the saturated fields is roughly proportional to (2J'+1)−1. The magnetic quenching is also found to depend on K' of the excited level. The rotational level dependence of the magnetic quenching of the slow fluorescence is related to a difference in the number of the triplet levels coupled to the optically excited singlet rovibronic level, based on the spin decoupling mechanism of the singlet–triplet mixed level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4499-4503 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have observed many collision-induced-dipole (CID) absorption bands arising from the transitions between quasimolecular ground and high-lying (n≤10) states in the strontium–rare-gas systems. For each absorption band, we have measured the energy shift of the absorption peak from the energy of the correlating atomic forbidden transition and the effective oscillator strength per unit perturber density fCID/Np. The shift is roughly proportional to the electron scattering length L0 for each rare-gas atom, whereas the fCID/Np is roughly proportional to L20. The shift decreases in general as the principal quantum number n increases, and increases as one goes from the s state to the d state, and to the degenerate manifold state with l≥3. These general features of the shift and fCID/Np are consistent with the predictions by a simple Fermi-potential model, suggesting the important role of the interaction between a Rydberg electron and a rare-gas atom in the CID absorption processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4582-4586 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The ν2 band of the silylene SiH2 molecule in X˜ 1 A1 was observed for the first time in the gas phase by using infrared diode laser kinetic spectroscopy. Silylene molecules were generated by the photolysis of phenylsilane at 193 nm. The observed spectrum was analyzed to determine the rotational and centrifugal distortion constants in the ground and v2 =1 states and the band origin ν0 =998.6241(3) cm−1 with one standard deviation in parentheses. The significance of the derived parameters is discussed in detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4597-4602 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Using translational spectroscopy we have studied the d 1Πg and C 3 Πg Rydberg states of O2 . The dissociation of the vibrational levels v=0–2 to all energetically accessible dissociation limits has been followed. The dissociation pathways directly reflect the predissociation mechanisms involved. For the d 1 Πg Rydberg state competition between predissociation by a 3 Πg valence state, due to singlet–triplet mixing, and by a 1 Πg valence state has been observed. Using the Fermi golden rule the observed vibrationally dependent competition is reproduced, corroborating the positions of the lower 1 Πg and 3 Πg valence state curves and yielding various coupling strengths.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4636-4642 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Rotationally inelastic scattering of carbon dioxide by translationally hot H, D, and Cl atoms was studied by time-resolved diode laser absorption. The high J rotational distribution falls off quite rapidly between J=60 and J=80. D atom collisions have roughly twice the excitation cross section versus H atom collisions, with the H*/D* ratio decreasing with increasing J. These results are consistent with a constraint on the total reagent orbital angular momentum available for rotational excitation. Transient Doppler profiles measured immediately after hot atom/CO2 collisions indicate that CO2 molecules excited to high J levels have a larger recoil velocity than molecules excited to lower J levels. This result is consistent with predictions based on a simple model which treats the CO2 potential as a hard shell ellipsoid.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...