ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
  • American Physical Society  (1)
  • Springer  (1)
  • American Chemical Society
  • Annual Reviews
  • 2015-2019
  • 2005-2009  (2)
  • 1995-1999
  • 1980-1984
  • 1930-1934
Collection
Keywords
Years
  • 2015-2019
  • 2005-2009  (2)
  • 1995-1999
  • 1980-1984
  • 1930-1934
  • +
Year
  • 1
    Publication Date: 2017-04-04
    Description: Seismicity is recognized to be a complex natural phenomenon either in space, time and energy domains: earthquakes occur as a sudden energy release after a strongly variable time period of stress accumulation, in locations not deterministically defined, with magnitude range spanning over several orders. But seismicity is certainly not a pure random process: spatial locations of events clearly display correlations with tectonic structures at all scales (from plates borders to small faults settings); on the other hand time evolution is clearly linked with strongest shocks occurrence and energy distribution displays hierarchical features. Although it is still not possible to propose deterministic models for earthquakes, well established statistical relations constrain seismicity under very specific and intriguing relations.
    Description: Published
    Description: 259-279
    Description: reserved
    Keywords: Earthquake ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We perform an analysis on the dissipative Olami-Feder-Christensen model on a small world topology considering avalanche size differences. We show that when criticality appears, the probability density functions (PDFs) for the avalanche size differences at different times have fat tails with a q-Gaussian shape. This behavior does not depend on the time interval adopted and is found also when considering energy differences between real earthquakes. Such a result can be analytically understood if the sizes (released energies) of the avalanches (earthquakes) have no correlations. Our findings support the hypothesis that a self-organized criticality mechanism with long-range interactions is at the origin of seismic events and indicate that it is not possible to predict the magnitude of the next earthquake knowing those of the previous ones.
    Description: Published
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: SOC, earthquakes interaction ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...