ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-09-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37460 , EVA Technology Collaboration Workshop; 13-16 Sep. 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-04
    Description: Observations of the Moon provide a primary technique for the on-orbit cross calibration of Earth remote sensing instruments. Monthly lunar observations are major components of the on-orbit calibration strategies of SeaWiFS and MODIS. SeaWiFS has collected more than 132 low phase angle and 59 high phase angle lunar observations over 12 years, Terra MODIS has collected more than 82 scheduled and 297 unscheduled lunar observations over 9 years, and Aqua MODIS has collected more than 61 scheduled and 171 unscheduled lunar observations over 7 years. The NASA Ocean Biology Processing Group s Calibration and Validation Team and the NASA MODIS Characterization Support Team use the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon to compare these time series of lunar observations over time and varying observing geometries. The cross calibration results show that Terra MODIS and Aqua MODIS agree, band-to-band, at the 1-3% level, while SeaWiFS and either MODIS instrument agree at the 3-8% level. The combined uncertainties of these comparisons are 1.3% for Terra and Aqua MODIS, 1.4% for SeaWiFS and Terra MODIS, and 1.3% for SeaWiFS and Aqua MODIS. Any residual phase dependence in the ROLO model, based on these observations, is less than 1.7% over the phase angle range of -80deg to -6deg and +5deg to +82deg . The lunar cross calibration of SeaWiFS, Terra MODIS, and Aqua MODIS is consistent with the vicarious calibration of ocean color products for these instruments, with the vicarious gains mitigating the calibration biases for the ocean color bands.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Once the lunar lander has touched down on the moon problems can occur if the crew module is not level. To mitigate, compliant landing gear provide a solution that would allow the module to be leveled once it has landed on some ground slope. The work presented here uses compliant joints, or flexures, for each leg of the module and optimizes the mechanics of these flexures such that the module can be passively leveled over a range of landing slopes. Preliminary results suggest that for landing on a slope of up to 12 deg the effective slope of the module can be reduced to a maximum of 2.5 deg.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the 40th Aerospace Mechanisms Symposium; 327-334; NASA/CP-2010-216272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the 40th Aerospace Mechanisms Symposium; 17-30; NASA/CP-2010-216272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: For spacecraft missions to Mars, especially the navigation of Martian orbiters and landers, an extensive knowledge of the Martian atmosphere is extremely important. The generally-accepted NASA standard for modeling (MarsGRAM), which was developed at Marshall Space Flight Center. MarsGRAM is useful for task such as aerobraking, performance analysis and operations planning for aerobraking, entry descent and landing, and aerocapture. Unfortunately, the densities for the Martian atmosphere in MarsGRAM are based on table look-up and not on an analytical algorithm. Also, these values can vary drastically from the densities actually experienced by the spacecraft. This does not have much of an impact on simple integrations but drastically affects its usefulness in other applications, especially those in navigation. For example, the navigation team for the Mars Atmosphere Volatile Environment (MAVEN) Project uses MarsGRAM to target the desired atmospheric density for the orbiter's pariapse passage, its closet approach to the planet. After the satellite's passage through pariapsis the computed density is compared to the MarsGRAM model and a scale factor is assigned to the model to account for the difference. Therefore, large variations in the atmosphere from the model can cause unexpected deviations from the spacecraft's planned trajectory. In order to account for this, an analytic stochastic model of the scale factor's behavior is desired. The development of this model will allow for the MAVEN navigation team to determine the probability of various Martian atmospheric variations and their effects on the spacecraft.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: There is a lack of data available for the stability of clathrate hydrates in the presence of ammonia for low-to-moderate pressures in the 0-10 MPa range. Providing such data will allow for a better understanding of natural mass transfer processes on celestial bodies like Titan and Enceladus, on which destabilization of clathrates may be responsible for replenishment of gases in the atmosphere. The experimental process utilizes a custom-built gas handling system (GHS) and a cryogenic calorimeter to allow for the efficient testing of samples under varying pressures and gas species.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...