ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • In situ oceanic observations  (31)
  • Mesoscale processes
  • American Meteorological Society  (49)
  • Springer Nature
  • Springer Science + Business Media
  • 2015-2019  (34)
  • 2010-2014  (15)
  • 1995-1999
  • 1990-1994
Collection
Publisher
  • American Meteorological Society  (49)
  • Springer Nature
  • Springer Science + Business Media
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 789-801, doi:10.1175/2009JPO4039.1.
    Description: The issue of internal wave–mesoscale eddy interactions is revisited. Previous observational work identified the mesoscale eddy field as a possible source of internal wave energy. Characterization of the coupling as a viscous process provides a smaller horizontal transfer coefficient than previously obtained, with vh 50 m2 s−1 in contrast to νh 200–400 m2 s−1, and a vertical transfer coefficient bounded away from zero, with νυ + (f2/N2)Kh 2.5 ± 0.3 × 10−3 m2 s−1 in contrast to νυ + (f2/N2)Kh = 0 ± 2 × 10−2 m2 s−1. Current meter data from the Local Dynamics Experiment of the PolyMode field program indicate mesoscale eddy–internal wave coupling through horizontal interactions (i) is a significant sink of eddy energy and (ii) plays an O(1) role in the energy budget of the internal wave field.
    Keywords: Eddies ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 744–765, doi:10.1175/JPO-D-12-067.1.
    Description: This study investigates the coherence between ocean bottom pressure signals at the Rapid Climate Change programme (RAPID) West Atlantic Variability Experiment (WAVE) array on the western North Atlantic continental slope, including the Woods Hole Oceanographic Institution Line W. Highly coherent pressure signals propagate southwestward along the slope, at speeds in excess of 128 m s−1, consistent with expectations of barotropic Kelvin-like waves. Coherent signals are also evidenced in the smaller pressure differences relative to 1000-m depth, which are expected to be associated with depth-dependent basinwide meridional transport variations or an overturning circulation. These signals are coherent and almost in phase for all time scales from 3.6 years down to 3 months. Coherence is still seen at shorter time scales for which group delay estimates are consistent with a propagation speed of about 1 m s−1 over 990 km of continental slope but with large error bounds on the speed. This is roughly consistent with expectations for propagation of coastally trapped waves, though somewhat slower than expected. A comparison with both Eulerian currents and Lagrangian float measurements shows that the coherence is inconsistent with a propagation of signals by advection, except possibly on time scales longer than 6 months.
    Description: This work was funded by the U.K. Natural Environment Research Council. Sofia Olhede was supported by EPSRC Grant EP/I005250/1. Initial observations at StationW(2001–04) were made possible by a grant from the G. Unger Vetlesen Foundation and support from the Woods Hole Oceanographic Institution. Since 2004, the Line W program has been supported by the U.S. National Science Foundation with supplemental contribution from WHOIs Ocean and Climate Change Institute.
    Description: 2013-10-01
    Keywords: Atlantic Ocean ; Boundary currents ; Meridional overturning circulation ; Pressure ; Waves, oceanic ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 842–854, doi:10.1175/JTECH-D-14-00215.1.
    Description: The time and space variability of wave transformation through a tidal inlet is investigated with radar remote sensing. The frequency of wave breaking and the net wave breaking dissipation at high spatial resolution is estimated using image sequences acquired with a land-based X-band marine radar. Using the radar intensity data, transformed to normalized radar cross section σ0, the temporal and spatial distributions of wave breaking are identified using a threshold developed via the data probability density function. In addition, the inlet bathymetry is determined via depth inversion of the radar-derived frequencies and wavenumbers of the surface waves using a preexisting algorithm (cBathy). Wave height transformation is calculated through the 1D cross-shore energy flux equation incorporating the radar-estimated breaking distribution and bathymetry. The accuracy of the methodology is tested by comparison with in situ wave height observations over a 9-day period, obtaining correlation values R = 0.68 to 0.96, and root-mean-square errors from 0.05 to 0.19 m. Predicted wave forcing, computed as the along-inlet gradient of the cross-shore radiation stress was onshore during high-wave conditions, in good agreement (R = 0.95) with observations.
    Description: These data were collected as part of a joint field program, Data Assimilation and Remote Sensing for Littoral Applications (DARLA) and Rivers and Inlets (RIVET-1), both funded by the Office of Naval Research. The authors were funded through the Office of Naval Research Grant N00014-10-1-0932 and the Office of the Assistant Secretary of Defense for Research and Engineering.
    Description: 2015-10-01
    Keywords: Wave breaking ; Waves, oceanic ; Wind waves ; In situ oceanic observations ; Radars/Radar observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 35 (2018): 893-910, doi:10.1175/JTECH-D-17-0102.1.
    Description: Rotary sidescan sonars are widely used to image the seabed given their high temporal and spatial resolution. This high resolution is necessary to resolve bedform dynamics and evolution; however, sidescan sonars do not directly measure bathymetry, limiting their utility. When sidescan sonars are mounted close to the seabed, bedforms may create acoustical “shadows” that render previous methods that invert the backscatter intensity to estimate bathymetry and are based on the assumption of a fully insonified seabed ineffective. This is especially true in coastal regions, where bedforms are common features whose large height relative to the water depth may significantly influence the surrounding flow. A method is described that utilizes sonar shadows to estimate bedform height and asymmetry. The method accounts for the periodic structure of bedform fields and the projection of the shadows onto adjacent bedforms. It is validated with bathymetric observations of wave-orbital ripples, with wavelengths ranging from 0.3 to 0.8 m, and tidally reversing megaripples, with wavelengths from 5 to 8 m. In both cases, bathymetric-measuring sonars were deployed in addition to a rotary sidescan sonar to provide a ground truth; however, the bathymetric sonars typically measure different and smaller areas than the rotary sidescan sonar. The shadow-based method and bathymetric-measuring sonar data produce estimates of bedform height that agree by 34.0% ± 27.2% for wave-orbital ripples and 16.6% ± 14.7% for megaripples. Errors for estimates of asymmetry are 1.9% ± 2.1% for wave-orbital ripples and 11.2% ± 9.6% for megaripples.
    Description: This project is partially supported by the National Science Foundation through a Graduate Research Fellowship and a Massachusetts Institute of Technology Energy Initiative Fellowship. Additionally, funding used in developing the method was obtained from NSF Grants OCE-1634481 and OCE-1635151. Field work was funded under ONR Grants N00014-06-10329 and N00014-13-1-0364.
    Keywords: Ocean ; Acoustic measurements/effects ; Algorithms ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2168–2186, doi:10.1175/JPO-D-11-08.1.
    Description: This paper studies the interaction of an Antarctic Circumpolar Current (ACC)–like wind-driven channel flow with a continental slope and a flat-bottomed bay-shaped shelf near the channel’s southern boundary. Interaction between the model ACC and the topography in the second layer induces local changes of the potential vorticity (PV) flux, which further causes the formation of a first-layer PV front near the base of the topography. Located between the ACC and the first-layer slope, the newly formed PV front is constantly perturbed by the ACC and in turn forces the first-layer slope with its own variability in an intermittent but persistent way. The volume transport of the slope water across the first-layer slope edge is mostly directly driven by eddies and meanders of the new front, and its magnitude is similar to the maximum Ekman transport in the channel. Near the bay’s opening, the effect of the topographic waves, excited by offshore variability, dominates the cross-isobath exchange and induces a mean clockwise shelf circulation. The waves’ propagation is only toward the west and tends to be blocked by the bay’s western boundary in the narrow-shelf region. The ensuing wave–coast interaction amplifies the wave amplitude and the cross-shelf transport. Because the interaction only occurs near the western boundary, the shelf water in the west of the bay is more readily carried offshore than that in the east and the mean shelf circulation is also intensified along the bay’s western boundary.
    Description: Y. Zhang acknowledges the support of the MIT-WHOI Joint Program in Physical Oceanography and NSF OCE-9901654 and OCE- 0451086. J. Pedlosky acknowledges the support of NSF OCE-9901654 and OCE-0451086.
    Keywords: Baroclinic flows ; Eddies ; Fronts ; Mass fluxes/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 1576–1582, doi:10.1175/JTECH-D-12-00204.1.
    Description: Onset's HOBO U22 Water Temp Pros are small, reliable, relatively inexpensive, self-contained temperature loggers that are widely used in studies of oceans, lakes, and streams. An in-house temperature bath calibration of 158 Temp Pros indicated root-mean-square (RMS) errors ranging from 0.01° to 0.14°C, with one value of 0.23°C, consistent with the factory specifications. Application of a quadratic calibration correction substantially reduced the RMS error to less than 0.009°C in all cases. The primary correction was a bias error typically between −0.1° and 0.15°C. Comparison of water temperature measurements from Temp Pros and more accurate temperature loggers during two oceanographic studies indicates that calibrated Temp Pros have an RMS error of ~0.02°C throughout the water column at night and beneath the surface layer influenced by penetrating solar radiation during the day. Larger RMS errors (up to 0.08°C) are observed near the surface during the day due to solar heating of the black Temp Pro housing. Errors due to solar heating are significantly reduced by wrapping the housing with white electrical tape.
    Description: This work is based on research supported by Awards USA 00002 and KSA 00011 made by King Abdullah University of Science and Technology (KAUST) and by the Ocean Sciences Division of the National Science Foundation under Grant OCE- 0548961.
    Description: 2014-01-01
    Keywords: In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 606–612, doi:10.1175/JPO-D-14-0221.1.
    Description: Mesoscale intrathermocline lenses are observed throughout the World Ocean and are commonly attributed to water mass anomalies advected from a distant origin. An alternative mechanism of local generation is offered herein, in which eddy–wind interaction can create lens-shaped disturbances in the thermocline. Numerical simulations illustrate how eddy–wind-driven upwelling in anticyclones can yield a convex lens reminiscent of a mode water eddy, whereas eddy–wind-driven downwelling in cyclones produces a concave lens that thins the mode water layer (a cyclonic “thinny”). Such transformations should be observable with long-term time series in the interiors of mesoscale eddies.
    Description: Support of this research by the National Science Foundation and National Aeronautics and Space Administration is gratefully acknowledged.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Models and modeling ; Ocean models ; Primitive equations model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric Sciences 72 (2015): 2786–2805, doi:10.1175/JAS-D-14-0257.1.
    Description: In Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the topography and do not account for the underlying wave dynamics. If a 5-km model instead of a 60-km model resolution in Ammassalik is used, the flow associated with the strong wind event is faster by up to 20 m s−1. The effects extend far downstream over the Irminger Sea, resulting in a diverging spatial distribution and temporal evolution of the heat fluxes. Local differences in the heat fluxes amount to 20%, with potential implications for ocean convection.
    Description: This study was supported by grants of the National Science Foundation (OCE- 0751554 and OCE-1130008) as well as the Natural Sciences and Engineering Research Council of Canada.
    Description: 2016-01-01
    Keywords: Katabatic winds ; Severe storms ; Air-sea interaction ; Mesoscale processes ; Orographic effects ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3139-3154, doi:10.1175/JPO-D-16-0042.1.
    Description: Downfront, or downwelling favorable, winds are commonly found over buoyant coastal plumes. It is known that these winds can result in mixing of the plume with the ambient water and that the winds influence the transport, spatial extent, and stability of the plumes. In the present study, the interaction of the Ekman velocity in the surface layer and baroclinic instability supported by the strong horizontal density gradient of the plume is explored with the objective of understanding the potential vorticity and buoyancy budgets. The approach makes use of an idealized numerical model and scaling theory. It is shown that when winds are present the weak stratification resulting from vertical mixing and the strong baroclinicity of the front results in near-zero average potential vorticity q. For weak to moderate winds, the reduction of q by diapycnal mixing is balanced by the generation of q through the geostrophic stress term in the regions of strong horizontal density gradients and stable stratification. However, for very strong winds the wind stress overwhelms the geostrophic stress and leads to a reduction in q, which is balanced by the vertical mixing term. In the absence of winds, the geostrophic stress dominates mixing and the flow rapidly restratifies. Nonlinearity, extremes of relative vorticity and vertical velocity, and mixing are all enhanced by the presence of a coast. Scaling estimates developed for the eddy buoyancy flux, the surface potential vorticity flux, and the diapycnal mixing rate compare well with results diagnosed from a series of numerical model calculations.
    Description: This study was supported by NSF Grants OCE-1433170 (MAS) and OCE-1459677 (LNT).
    Description: 2017-04-07
    Keywords: Coastal flows ; Ekman pumping/transport ; Mesoscale processes ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3011-3029, doi:10.1175/JPO-D-15-0248.1.
    Description: Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semiannual variability is also pronounced, despite weak forcing at that period. This study uses multiyear, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semiannual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the fourth mode and the semiannual cycle is dominated by the second mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semiannual cycles of the respective dominant baroclinic modes are associated with characteristic basinwide structures. Using an idealized, linear, reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e., square basin vs realistic coastlines) or forcing (i.e., spatially uniform vs spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.
    Description: This study was supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 (SFB754) ‘‘Climate–Biogeochemistry Interactions in the Tropical Ocean’’ and through several research cruises with R/V Meteor, R/V Maria S. Merian, andR/VL’Atalante by the German Federal Ministry of Education and Research as part of the cooperative projects RACE (03F0605B) and SACUS (03G0837A) and by European Union 7th Framework Programme (FP7 2007–13) under Grant Agreement 603521 PREFACE project.
    Keywords: Atlantic Ocean ; Ocean circulation ; In situ oceanic observations ; Ocean models ; Seasonal cycle ; Tropical variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...