ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crustal structure
  • Wiley-Blackwell  (3)
  • Wiley  (2)
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2015-2019  (1)
  • 2010-2014  (4)
  • 2005-2009
Collection
Publisher
Years
  • 2015-2019  (1)
  • 2010-2014  (4)
  • 2005-2009
Year
  • 1
    Publication Date: 2017-04-04
    Description: Seismological, geological and geodetic data have been integrated to characterize the seismogenic structure of the late 2013-early 2014 moderate energy (maximum local magnitude MLmax = 4.9) seismic sequence that struck the interior of the Matese Massif, part of the Southern Apennines active extensional belt. The sequence, heralded by a ML = 2.7 foreshock, was characterized by two main shocks with ML = 4.9 and ML = 4.2, respectively, which occurred at a depth of ∼17–18 km. The sequence was confined in the 10–20 km depth range, significantly deeper than the 1997–1998 sequence which occurred few km away on the northeastern side of the massif above ∼15 km depth. The depth distribution of the 2013–14 sequence is almost continuous, albeit a deeper (16–19 km) and a shallower (11–15 km) group of events can be distinguished, the former including the main shocks and the foreshock. The epicentral distribution formed a ∼10 km long NNW–SSE trending alignment, which almost parallels the surface trace of late Pliocene–Quaternary southwest-dipping normal faults with a poor evidence of current geological and geodetic deformation. We built an upper crustal model profile for the eastern Matese massif through integration of geological data, oil exploration well logs and seismic tomographic images. Projection of hypocentres on the profile suggests that the seismogenic volume falls mostly within the crystalline crust and subordinately within the Mesozoic sedimentary cover of Apulia, the underthrust foreland of the Southern Apennines fold and thrust belt. Geological data and the regional macroseismic field of the sequence suggest that the southwest-dipping nodal plane of the main shocks represents the rupture surface that we refer to here as the Matese fault. The major lithological discontinuity between crystalline and sedimentary rocks of Apulia likely confined upward the rupture extent of the Matese fault. Repeated coseismic failure represented by the deeper group of events in the sequence, activated in a passive fashion the overlying ∼11–15 km deep section of the upper crustal normal faults. We consider the southwest-dipping Matese fault representative of a poorly known type of seismogenic structures in the Southern Apennines, where extensional seismogenesis and geodetic strain accumulation occur more frequently on NE-dipping, shallower-rooted faults. This is the case of the Boiano Basin fault located on the northern side of the massif, to which the 1997–1998 sequence is related. The close proximity of the two types of seismogenic faults at the Matese Massif is related to the complex crustal architecture generated by the Pliocene–early Pleistocene contractional and transpressional tectonics.
    Description: Published
    Description: 823-837
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Seismicity and tectonics ; Continental tectonics: extensional ; Crustal structure ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: In this paper, we propose a new model of the crustal structure and seismotectonics for central Sicily (southern Italy) through the analysis of the depth distribution and kinematics of the instrumental seismicity, occurring during the period from 1983 to 2010, and its comparison with individual geological structures that may be active in the area. The analysed data set consists of 392 earthquakes with local magnitudes ranging from 1.0 to 4.7. We defined a new, detailed 1-D velocity model to relocate the earthquakes that occurred in central Sicily, and we calculated a Moho depth of 37 km and a mean VP/VS ratio of 1.73. The relocated seismic events are clustered mainly in the area north of Caltanissetta (e.g. Mainland Sicily) and in the northeastern sector (Madonie Mountains) of the study area; only minor and greatly dispersed seismicity is located in the western sector, near Belice, and along the southern coast, between Gela and Sciacca. The relocated hypocentral distribution depicts a bimodal pattern: 50 per cent of the events occur within the upper crust at depths less than ~16 km, 40 per cent of the events occur within the middle and depth crust, at depths between 16 and 32 km, and the remaining 10 per cent occur at subcrustal depths. The energy release pattern shows a similar depth distribution. On the basis of the kinematic analysis of 38 newly computed focal plane solutions, two major geographically distinct seismotectonic domains are distinguished: the Madonie Mountain domain, with prevalent extensional and extensional-oblique kinematics associated with upper crust Late Pliocene–Quaternary faulting, and the Mainland Sicily domain, with prevalent compressional and compressional-oblique kinematics associated with thrust faulting, at mid to deep crust depth, along the north-dipping Sicilian Basal Thrust (SBT). The stress inversion of the Mainland Sicily focal solutions integrated with neighbouring mechanisms available in the literature highlights a regional homogeneous compressional tensor, with a subhorizontal NNW–SSE-striking σ1 axis. In addition, on the basis of geodetic data, the Mainland Sicily domain may be attributed to the SSE-ward thrusting of the Mainland Sicily block along the SBT plane. Seismogenic shearing along the SBT at mid-crustal depths was responsible for the unexpected Belice 1968 earthquake (Mw 6.1), with evident implications in terms of hazard assessment.
    Description: Published
    Description: 1237-2252
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismicity and tectonics ; Continental tectonics: compressional ; Dynamics: seismotectonics ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We investigate in detail the crustal layering of the ‘Val di Chiana Basin’ (Northern Apennines, Tuscany, Italy) through receiver functions and seismic anisotropy with hexagonal symmetry. The teleseismic data set is recorded in correspondence of a typical foreland basin resulting by the progressive eastward retreat of a regional-scale subduction zone trapped between two continents. We study the azimuthal variations of the computed and binned receiver functions associated to a harmonic angular analysis to emphasize the presence of the dipping and the anisotropic structures. The resulting S-wave velocity model shows interesting and new results for this area that we discuss in a regional geodynamic contest contributing to the knowledge of the structure of the forearc of the subduction zone. A dipping interface (N192°E strike, 18° dip) has been revealed at about 1.5 km depth, that separates the basin sediments and flysch from the carbonates and evaporites. Moreover, we interpret the two upper-crust anisotropic layers (at about 6 and 17 km depth) as the Hercynian Phyllites and Micaschists, of the Metamorphic Tuscan Basement. At relatively shallow depths, the presence of these metamorphic rocks causes the seismic anisotropy in the upper crust. The presence of shallow anisotropic layers is a new and interesting feature, first revealed in the study area. Beneath the crust–mantle transition (Moho), located about 28 km depth, our analysis reveals a 7-km-thick anisotropic layer.
    Description: Published
    Description: 545-556
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic anisotopy ; Computational Seismology ; Wave propagation ; Subduction zone process ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present the surface wave dispersion results of the application of the ambient noise method to broad-band data recorded at 114 stations from the Istituto Nazionale di Geofisica e Vul- canologia (INGV) national broad-band network, some stations of the Mediterranean Very Broadband Seismographic Network (MedNet) and of the Austrian Central Institute for Me- teorology and Geodynamics (ZAMG). Vertical-component ambient noise data from 2005 October to 2007 March have been cross-correlated for station-pairs to estimate fundamental mode Rayleigh wave Green’s functions. Cross-correlations are calculated in 1-hr segments, stacked over periods varying between 3 months and 1.5 yr. Rayleigh wave group dispersion curves at periods from 8 to 44 s were determined using the multiple-filter analysis technique. The study region was divided into a 0.2◦ × 0.2◦ grid to invert for group velocity distribu- tions. Checkerboard tests were first carried out, and the lateral resolution was estimated to be about 0.6◦. The resulting group velocity maps from 8 to 36 s show the significant difference of the crustal structure and good correlations with known geological and tectonic features in the study region. The Po Plain and the Southern Alps evidence lower group veloci- ties due to soft alluvial deposits, and thick terrigenous sediments. Our results also clearly showed that the Tyrrhenian Sea is characterized with much higher velocities below 8 km than the Italian peninsula and the Adriatic Sea which indicates a thin oceanic crust beneath the Tyrrhenian Sea.
    Description: Published
    Description: 1242-1252
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Tomography ; Surface waves and free oscillations ; Crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Prominent arrivals in the coda of seismograms from the wider Alpine area can be associated with lateral reflections of Love waves at the northern Apennines mountain chain (Italy), where structural heterogeneity causes an abrupt contrast in phase velocity. We discuss an approach to image lateral heterogeneity from reflected surface waves using intermediate-period, three- component coda waveforms as sources for an adjoint wavefield that propagates the reflections backward in time. We numerically compute three-dimensional sensitivity kernels for the dependence of coda waveforms on P velocity, S velocity and density, based upon correlations between the adjoint and the regular forward wavefields. We consider synthetic coda waveforms for a simplified model of the northern Apennines, as well as real coda observations from five moderate magnitude earthquakes (M W 4.6–5.6) in the southern Alps. Wave propagation is simulated using the spectral-element method, for which a 3-D regional earth model is used in the case of real data. Single and combined event sensitivity kernels provide clear images of the reflectivity associated with the northern Apennines in kernels for density and S-wave speed. The kernels show that surface wave reflections occur near the axial zone of the mountain chain. Apart from the Apennines, the approach is able to image other smaller reflectivity patches from the coda waveforms, like the Ivrea zone in the southern Alps. Our coda misfit kernels can be integrated in a gradient-based waveform tomography, where they could enhance the shar pness of the model at lateral discontinuities.
    Description: Published
    Description: 543–554
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Tomography; ; Computational seismology ; Wave scattering and diffraction ; Crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...