ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (19)
  • Maps
  • Mineralogical Society of America  (19)
  • 2020-2024  (19)
  • Geosciences  (19)
Collection
  • Articles  (19)
  • Maps
Years
Year
Journal
Topic
  • Geosciences  (19)
  • 1
    Publication Date: 2021-11-01
    Description: The Mogok metamorphic belt (MMB), Myanmar, is one of the most well-known gemological belts on Earth. Previously, 40Ar/39Ar, K-Ar, and U-Pb dating have yielded Jurassic-Miocene magmatic and metamorphic ages of the MMB and adjacent areas; however, no reported age data are closely related to the sapphire and moonstone deposits. Secondary ion mass spectrometry (SIMS) U-Pb dating of acicular rutile inclusions in sapphire and furnace step-heating 40Ar/39Ar dating of moonstone (antiperthite) in syenites from the MMB yield ages of 13.43 ± 0.92 and 13.55 ± 0.08 Ma, respectively, indicating both Myanmar sapphire and moonstone formed at the same time, and the ages are the youngest published in the region. The ages provide insight into the complex histories and processes of magmatism and metamorphism of the MMB, the formation of gemstone species in this belt, and the collision between India and Asia. In addition, our high field strength element data for the oriented rutile inclusions suggest an origin by co-precipitation rather than exsolution. In situ age determination of this nature is particularly significant since rutile inclusions in other gemstones, such as rubies, can be used to help constrain the geological history of their host rocks elsewhere.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-01
    Description: The mobility of Ti, a member of high field strength elements, in metamorphic fluids is crucial to understand the recycling of commonly perceived nominally soluble elements and for mass-flux calculations during crustal processes. In this study, we present evidence for large-scale Ti mobility from a suite of clinohumite±spinel-bearing dolomitic marbles from the Makrohar area in central India. The studied rocks mostly contain dolomite and calcite (in subequal proportions) and a subordinate amount of forsterite. It commonly develops 1–5 cm thick, laterally continuous, mostly parallel, sometimes anastomosing, brown-colored clinohumite rich bands with variable spinel. Clinohumite has moderate Ti and F (TiO2 = 0.55–2.88 wt%; F = 0.94–1.88 wt%; n = 32). Textural and phase equilibria modeling indicate that clinohumite grew at the expense of forsterite + dolomite under static conditions due to infiltration of F- and Ti-bearing extremely H2O-rich fluids (XCO2 〈 0.03), at ~5–6 kbar pressure and ~650–700 °C temperature. The Ti and F were most likely supplied by highly channelized aqueous fluids restricted within the centimeter-thick bands. The negative volume change of the reactions further facilitated fluid ingress. The lateral continuity of the bands over several meters across multiple out-crops indicates that Ti was mobile at the meter to kilometer scale. The results are in accordance with experimental studies that solubility of Ti increases in the presence of halides and imply that Ti may be much more mobile in metamorphic fluids during regional metamorphism than previously anticipated.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-11-01
    Description: δ-AlOOH has emerged as a promising candidate for water storage in the lower mantle and could have delivered water into the bottom of the mantle. To date, it still remains unclear how the presence of iron affects its elastic, rheological, vibrational, and transport properties, especially across the spin crossover. Here, we conducted high-pressure X-ray emission spectroscopy experiments on a δ-(Al0.85Fe0.15) OOH sample up to 53 GPa using silicone oil as the pressure transmitting medium in a diamond-anvil cell. We also carried out laser Raman measurements on δ-(Al0.85Fe0.15)OOH and δ-(Al0.52Fe0.48)OOH up to 57 and 62 GPa, respectively, using neon as the pressure-transmitting medium. Evolution of Raman spectra of δ-(Al0.85Fe0.15)OOH with pressure shows two new bands at 226 and 632 cm−1 at 6.0 GPa, in agreement with the transition from an ordered (P21nm) to a disordered hydrogen bonding structure (Pnnm) for δ-AlOOH. Similarly, the two new Raman bands at 155 and 539 cm−1 appear in δ-(Al0.52Fe0.48)OOH between 8.5 and 15.8 GPa, indicating that the incorporation of 48 mol% FeOOH could postpone the order-disorder transition upon compression. On the other hand, the satellite peak (Kβ′) intensity of δ-(Al0.85Fe0.15)OOH starts to decrease at ~30 GPa and it disappears completely at 42 GPa. That is, δ-(Al0.85Fe0.15)OOH undergoes a gradual electronic spin-pairing transition at 30–42 GPa. Furthermore, the pressure dependence of Raman shifts of δ-(Al0.85Fe0.15)OOH discontinuously decreases at 32–37 GPa, suggesting that the improved hydrostaticity by the use of neon pressure medium could lead to a relatively narrow spin crossover. Notably, the pressure dependence of Raman shifts and optical color of δ-(Al0.52Fe0.48)OOH dramatically change at 41–45 GPa, suggesting that it probably undergoes a relatively sharp spin transition in the neon pressure medium. Together with literature data on the solid solutions between δ-AlOOH and ε-FeOOH, we found that the onset pressure of the spin transition in δ-(Al,Fe)OOH increases with increasing FeOOH content. These results shed new insights into the effects of iron on the structural evolution and vibrational properties of δ-AlOOH. The presence of FeOOH in δ-AlOOH can substantially influence its high-pressure behavior and stability at the deep mantle conditions and play an important role in the deep-water cycle.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-01
    Description: While much progress has been made in electron-probe microanalysis (EPMA) to improve the accuracy of point analysis, the same level of attention has not always been applied to the quantification of wavelength-dispersive spectrometry (WDS) X-ray intensity maps at the individual pixel level. We demonstrate that the same level of rigor applied in traditional point analysis can also be applied to the quantification of pixels in X-ray intensity maps, along with additional acquisition and quantitative processing procedures to further improve accuracy, precision, and mapping throughput. Accordingly, X-ray map quantification should include pixel-level corrections for WDS detector deadtime, corrections for changes in beam current (beam drift), changes in standard intensities (standard drift), high-accuracy removal of background intensities, quantitative matrix corrections, quantitative correction of spectral interferences, and, if required, time-dependent corrections (for beam and/or contamination sensitive materials). The purpose of quantification at the pixel level is to eliminate misinterpretation of intensity artifacts, inherent in raw X-ray intensity signals, that distort the apparent abundance of an element. Major and minor element X-ray signals can contain significant artifacts due to absorption and fluorescence effects. Trace element X-ray signals can contain significant artifacts where phases with different average atomic numbers produce different X-ray continuum (bremsstrahlung) intensities, or where a spectral interference, even an apparently minor one, can produce a false-positive intensity signal. The methods we propose for rigorous pixel quantification require calibration of X-ray intensities on the instrument using standard reference materials, as we already do for point analysis that is then used to quantify multiple X-ray maps, and thus the relative time overhead associated with such pixel-by-pixel quantification is small. Moreover, the absolute time overhead associated with this method is usually less than that required for quantification using manual calibration curve methods while resulting in significantly better accuracy. Applications to geological, synthetic, or engineering materials are numerous as quantitative maps not only show compositional 2D variation of fine-grained or finely zoned structures but also provide very accurate quantitative analysis, with precision approaching that of a single point analysis, when multiple-pixel averaging in compositionally homogeneous domains is utilized.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-01
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-11-01
    Description: The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capacity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth’s primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the “Hadean Matte.” We also discuss briefly the implications of our results for the lunar magma ocean.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-11-01
    Description: The transport of calcium carbonate (CaCO3) into the Earth’s interior through subduction is one of the key processes in the global cycling of carbon. To develop a better understanding of the CaCO3 structural stability during subduction processes, the phase transitions among CaCO3-I (calcite), CaCO3-II, -III/IIIb, and aragonite under pressure-temperature (P-T) conditions up to 2.5 GPa and 600 °C, in hydrous and anhydrous environments, were investigated using a hydrothermal diamond-anvil cell. One displacive and two reconstructive processes during the phase transitions among CaCO3 polymorphs were confirmed from the results obtained from in situ observations and Raman spectroscopic measurements. Meanwhile, the effect of Ca-substitutional metal cations (e.g., Mg2+) in CaCO3 and the presence of an aqueous fluid on the phase transition processes have been determined. Specifically, the CaCO3-I ↔ -II phase transition is a displacive process, occurring instantly at pressures varying from 1.6 GPa at room temperature to 1.5 GPa at 500 °C with the phase equilibrium boundary having a minimum P-T point at ~1.4 GPa at 300 °C, and is completely reversible upon cooling and decompression. The CaCO3-II → -III phase transition is a reconstructive process, observed at P-T conditions from 2.0 GPa at room temperature to 2.5 GPa at 150 °C, and is accomplished by solid recrystallization starting from CaCO3-II, transitioning through an intermediate CaCO3-IIIb, and ending at the CaCO3-III structure. The phase transition between CaCO3-I or -II and aragonite, which is also a reconstructive process, was found to occur by progressive solid recrystallization under high P-T hydrous and anhydrous conditions, or alternatively, via dissolution-precipitation under low-P-T hydrous conditions, depending on the presence of aqueous fluids and the heating rate of the system. The substitution for Ca2+ by other metal cations (e.g., Mg2+, Mn2+, Fe2+) in CaCO3 results in a significant increase in the pressures for the displacive and solid recrystallization reconstructive phase transitions, but has no detectable influence on the CaCO3-I/II ↔ aragonite transformation via a dissolution-precipitation process under hydrous conditions. Our results show that the presence of Ca-substitutional metal cations in CaCO3 is a key factor controlling the phase stability of CaCO3 under high P-T conditions, and suggest that aragonite should be the predominant phase in the upper mantle in subduction zones where the heating rate is very low and slab dehydration is prevalent.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-11-01
    Description: Gold (Au) deposits have formed in orogenic belts throughout Earth’s history. However, the upper temperature limits of orogenic Au vein formation are difficult to constrain because measurements made on fluid inclusions focus on intermediate to late-stage minerals (e.g., quartz and calcite) or are based on P-T estimates for the metamorphic mineral assemblages of the host rocks. We conducted a study of TiO2 polymorphs that are among the earliest minerals that grew in Au-bearing veins of the Dongyuan deposit, Jiangnan orogenic Au belt, South China. Based on Raman analyzes, we identified TiO2 polymorphs of anatase (with Raman peaks at 396, 515, and 638 cm−1), rutile (with Raman peaks at 235, 447, and 613 cm−1), and anatase–rutile intergrowths. Transmission electron microscope (TEM) confirmed the polymorphs identifying the [111] zone axis of anatase, [110] zone axis of rutile, and [111] and [111] zone axes of rutile–anatase intergrowths. The TiO2 polymorphs in the Dongyuan Au veins constrain a temperature range for early mineral precipitation in the veins of 450–550 °C. The results show that ore-forming fluids for this orogenic Au deposit emplaced in the shallow crust originated from deeper and hotter crustal levels (e.g., high-grade metamorphic rocks in the middle to lower crust).
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-11-01
    Description: Carletonmooreite (IMA 2018-68), Ni3Si, is a new nickel silicide mineral that occurs in metal nodules from the Norton County aubrite meteorite. These nodules are dominated by low-Ni iron (kamacite), with accessory schreibersite, nickelphosphide, perryite, and minor daubréelite, tetrataenite, taenite, and graphite. The chemical composition of the holotype carletonmooreite determined by wavelength-dispersive electron-microprobe analysis is (wt%) Ni 82.8 ± 0.4, Fe 4.92 ± 0.09, and Si 13.08 ± 0.08 (n = 6, total = 100.81) giving an empirical formula of (Ni2.87Fe0.18)Σ3.05Si0.95, with an end-member formula of Ni3Si. Further grains discovered in the specimen after the new mineral submission extend the composition, i.e., (wt%) Ni 81.44 ± 0.82, Fe 5.92 ± 0.93, Cu 0.13 ± 0.02, and Si 13.01 ± 0.1 (n = 11, total = 100.51 ± 0.41), giving an empirical formula (Ni2.83Fe0.22Cu0.004)Σ3.05Si0.95. The backscat tered electron-diffraction patterns were indexed by the Pm3m auricupride (AuCu3)-type structure and give a best fit to synthetic Ni3Si, with a = 3.51(1) Å, V = 43.2(4) Å3, Z = 1, and calculated density of 7.89 g/cm3. Carletonmooreite is silver colored with an orange tinge, isotropic, with a metallic luster and occurs as euhedral to subhedral crystals 1 × 5 µm to 5 × 14 µm growing on tetrataenite into kamacite. The dominant silicide in the Norton County aubrite metal nodules is perryite (Ni,Fe)8(Si,P)3, with carletonmooreite restricted to localized growth on rare plessite fields. The isolated nature of small euhedral carletonmooreite single crystals suggests low-temperature growth via solid-state diffusion from the surrounding kamacite and epitaxial growth on the tetrataenite. This new mineral is named in honor of Carleton B. Moore, chemist and geologist, and founding director of the Center for Meteorite Studies at Arizona State University, for his many contributions to cosmochemistry and meteoritics.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-11-01
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...