ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY  (16)
  • GFZ Data Services  (16)
  • American Physical Society (APS)
  • Institute of Physics
  • Molecular Diversity Preservation International
  • 2020-2024  (16)
  • 1
    Publication Date: 2023-01-20
    Description: Abstract
    Description: The geoid for Costa Rica GCR-RSH-2020 (Geoide-Costarricense-Regional Calculado con el Método de Stokes-Helmert) is a 1 arc minute grid computed from terrestrial, marine and satellite gravity data. It is remarkable the comprehensive data cleaning and the use of new terrestrial gravity values which were not included in any other geoid determinations. The GECO global geopotential model was used for the data gap filling. The GCR-RSH-2020 computation was based on the Stokes-Helmert approach developed by the University of New Brunswick, using GOCO05s as background global geopotential model. The resulting geoid is distributed in the WGS84 system (note that between WGS84 and WRS80, there is a shift of approximately 93 cm for Costa Rica). The GCR-RSH-2020 accuracy was assessed by comparing it with GNSS/levelling values on 25 selected benchmarks of the Costa Rica vertical reference system, showing differences with a standard deviation of 0.207 m. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; UNB Stokes-Helmert approach ; Costa Rica ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-04
    Description: Abstract
    Description: GRACE monthly gravity field solutions starting from April 2002 to June 2017 up to degree and order 90 computed with the Celestial Mechanics Approach at AIUB. The time series is an updated of AIUB-RL02 GRACE monthly gravity field time series using Level-1B GRACE data and updated background models. The dataset is created within the framework of the G3P - Global Gravity-based Groundwater Product project (https://www.g3p.eu/), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870353.
    Description: Other
    Description: Parameters: product_type = gravity_field earth_gravity_constant = 3.986004415000e+14 radius = 6.378137000000e+06 max_degree = 90 norm = fully_normalized tide_system = tide_free errors = formal
    Keywords: International Center for Global Earth Models ; ICGEM ; Gravity Recovery And Climate Experiment ; GRACE ; GRACE-FO ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; Geopotential ; Gravity Field ; Time variable Gravity Field ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-21
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The Walferdange Underground Laboratory for Geodynamics (WULG) is located at the middle of a long labyrinth of galleries which originally have been established for the commercial extraction of gypsum. Exceptional temperature and humidity stability, the absence of water and human perturbations, distance from the ocean and easy access, were some of the motivations for initially choosing this site for instrumentation and Earth tide research. Instruments to measure the micro deformations produced by the tidal forces have been developed and tested in the Laboratory for more than 30 years. Ground deformations and earthquakes are or have been recorded continuously by means of spring gravimeters, vertical and horizontal pendulums, long base water tube tiltmeters, vertical and horizontal strain meters, short period and broad band seismometers. Meteorological parameters (temperature, humidity and atmospheric pressure), as well as radon gas emissions, are also continuously monitored in various locations within the mine. In 2000, the Minister of Research of the Grand-Duchy of Luxembourg decided to establish a new International Reference Station for Intercomparisons of Absolute Gravimeters (ISIAG). The instrumentation to support the project includes a superconducting gravimeter OSG-CT040, an absolute gravimeter FG5X-216, and other ancillary equipment necessary to support research. In January 2002, a first superconducting gravimeter was installed. The instrument was then stopped in March 2003 due to an abnormally large instrumental drift. In December 2003, it was replaced by a brand-new gravimeter with the same name and which continuously operates since that date. Absolute gravity measurements have been performed on a regular time base to calibrate the superconducting gravimeter and to estimate its instrumental drift. Since 2003, the WULG hosted three European Comparisons and one International Comparison of Absolute Gravimeters. It was the first international comparison outside the walls of the BIPM (Bureau International des Poids et Mesures) in Sèvres (France) where it had traditionally been organized for 30 years.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; geophysics ; geodesy ; hydrology ; Absolute gravimetry ; Metrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History: 15 June 2020: Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Dahle & Murböck (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L2B). --------------------------------------------------------------------------------------------- Post-processed GRACE/GRACE-FO spherical harmonic coefficients of COST-G RL01 Level-2 GSM products representing an estimate of Earth's gravity field variations during the specified timespan. Post-processing steps comprise: (1) subtraction of a long-term mean field; (2) optionally, decorrelation and smoothing with VDK filter (anisotropic filter taking the actual error covariance information of the underlying GSM coefficients into account, see Horvath et al. (2018)); (3) replacement of coefficients C20, C30 (only for the months starting from 2016/11 and later), C21 and S21 and its formal standard deviations by values estimated from a combination of GRACE/GRACE-FO and Satellite Laser Ranging (SLR); (4) subtraction of linear trend caused by Glacial Isostatic Adjustment (GIA) as provided by a numerical model; (5) insertion of geocenter coefficients (C10, C11, S11); and (6) removal of estimated aliased signal of the S2 tide (161 days period). These coefficients represent signals caused by water mass redistribution over the continents and in the oceans. These post-processed GRACE/GRACE-FO GSM products are denoted as Level-2B products. There are multiple variants of Level-2B products available that differ by the characteristics of the anisotropic filter applied. These variants are distinguishable by the following strings in the product file names: - 'NFIL': Level-2B product is not filtered - 'VDK1': Level-2B product is filtered with VDK1 - 'VDK2': Level-2B product is filtered with VDK2 - 'VDK3': Level-2B product is filtered with VDK3 - 'VDK4': Level-2B product is filtered with VDK4 - 'VDK5': Level-2B product is filtered with VDK5 - 'VDK6': Level-2B product is filtered with VDK6 - 'VDK7': Level-2B product is filtered with VDK7 - 'VDK8': Level-2B product is filtered with VDK8 The individual auxiliary data sets and models used during the post-processing steps mentioned above are provided as well (in the aux_data folder): - 'GRAVIS-2B_2002095-2020091_GFZOP_0600_NFIL_0002.gz': Long-term mean field calculated as unweighted average of the 183 available GFZ RL06 GSM products in the period from 2002/04 up to and including 2020/03. - 'GRAVIS-2B_COSTG_GRACE+SLR_LOW_DEGREES_0002.dat': time series of coefficients C20, C30, C21 and S21 estimated from a combination of GRACE/GRACE-FO and SLR - 'GRAVIS-2B_GIA_ICE-6G_D_VM5a_0002.gz': Model from Peltier et al. (2018) for subtraction of linear trend caused by GIA - 'GRAVIS-2B_COSTG_GEOCENTER_0002.dat': Time series with geocenter coefficients estimated from COST-G RL01 Further information about the Level-2B products and the auxiliary data is provided in the header of the corresponding data files.
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-2 ; Level-2B ; SHM ; Spherical Harmonic Model ; Gravitational Field ; GSM ; Geopotential ; Gravity Field ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Gravity Anomaly ; Satellite Geodesy ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-12
    Description: Abstract
    Description: The Atmosphere and Ocean non-tidal De-aliasing Level-1B (AOD1B) product is widely used in satellite gravimetry to correct for transient effects of atmosphere-ocean mass variability that would otherwise alias into monthly-mean global gravity fields. The most recent release is based on the global ERA5 reanalysis and ECMWF operational data together with simulations from the general ocean circulation model MPIOM consistently forced with fields of the same atmospheric data-set. As background models are inevitably imperfect, residual errors due to aliasing remain. Accounting for the uncertainties of the background model data has, however, proven to be a useful approach to mitigate the impact of residual aliasing. In light of the changes made in the new release of AOD1B, previous uncertainty assessments are deemed too pessimistic and have been revised in the new time-series of true errors: AOe07. One possible way to include the uncertainty information of background models in gravity field estimation or simulation studies is through the computation and application of a variance-covariance matrix that describes the spatio-temporal error characteristics of the background model. The AOe07 variance-covariance-matrix provides this information through (1) a fully populated matrix up to degree and order 40 as well as (2) a diagonal matrix up to degree and order 180.
    Keywords: Satellite Gravimetry ; De-Aliasing ; Mass Variability ; Error Estimation ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE SERVICES 〉 MODELS 〉 ATMOSPHERIC GENERAL CIRCULATION MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 OCEAN GENERAL CIRCULATION MODELS (OGCM)/REGIONAL OCEAN MODELS ; Models/Analyses 〉 REANALYSIS MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-01
    Description: Abstract
    Description: Operationally combined monthly gravity fields of the GRACE-FO satellite mission in spherical harmonic representation (Level-2 product) generated by the Combination Service for Time-variable Gravity Fields (COST-G; Jäggi et al. (2020):http://dx.doi.org/10.1007/1345_2020_109), a product center for time-variable gravity fields of IAG's International Gravity Field Service (IGFS). COST-G_GRACE-FO_RL01_OP is a combination of AIUB-GRACE-FO_op, GFZ-RL06 (GFO), GRGS-RL05 (unconstrained solution), ITSG-Grace_op, LUH-GRACE-FO, CSR-RL06 (GFO) and JPL-RL06 (GFO). The original time-series were provided by the analysis centers (ACs) and partner analysis centers (PCs) of COST-G.
    Description: Methods
    Description: COST-G performs a harmonization and quality control of the individual input solutions of the COST-G ACs and PCs. The combination of COST-G_GRACE-FO_RL01_OP is then performed applying variance component estimation on the solution level (Jean et al., 2018): https://doi.org/10.1007/s00190-018-1123-5). The resulting COST-G combined gravity fields are validated assessing their signal and noise content in the spectral and spatial domain (Meyer et al., 2019: https://doi.org/10.1007/s00190-019-01274-6) and by the COST-G Product Evaluation Group (PEG).
    Keywords: COST-G ; IGFS Product Center ; Combined solutions ; Time variable gravity ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-01
    Description: Abstract
    Description: Combined monthly gravity fields of the GRACE satellite mission in spherical harmonic representation (Level-2 product) generated by the Combination Service for Time-variable Gravity Fields (COST-G; Jäggi et al. (2020):http://dx.doi.org/10.1007/1345_2020_109), a product center for time-variable gravity fields of IAG's International Gravity Field Service (IGFS). COST-G GRACE RL01 is a combination of AIUB-RL02, GFZ-RL06, GRGS-RL04 (unconstrained solution), ITSG-GRACE2018, and CSR-RL06. The original time-series were provided by the analysis centers (ACs) and partner analysis centers (PCs) of COST-G.
    Description: Methods
    Description: COST-G performs a harmonization and quality control of the individual input solutions of the COST-G ACs and PCs. The combination of COST-G GRACE RL01 is then performed applying variance component estimation on the solution level (Jean et al., 2018): https://doi.org/10.1007/s00190-018-1123-5). The resulting COST-G combined gravity fields are validated assessing their signal and noise content in the spectral and spatial domain (Meyer et al., 2019: https://doi.org/10.1007/s00190-019-01274-6) and by the COST-G Product Evaluation Group (PEG).
    Keywords: COST-G ; IGFS Product Center ; Combined solutions ; Time variable gravity ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Language: English
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-12-06
    Description: Abstract
    Description: The Northeast Atlantic (NEA) region has long been a subject of interest due to its complex geological history, particularly regarding the interaction between the Iceland plume and the lithospheric plates. In this data publication, we present a comprehensive three-dimensional structural and density model of the NEA crust and uppermost mantle, consolidating and integrating a wide range of previously fragmented data sets. Our model highlights the influence of the Iceland plume on the region's geological evolution, shedding light on the mechanisms that facilitated the continental breakup between Europe and Laurentia during the earliest Eocene period. The whole workflow and methods are described in Gomez Dacal et al. (2023) and its Supplementary Information.
    Description: TechnicalInfo
    Description: Model coordinates: Model coordinates are given in Equidistant Conic North Atlantic (ECNA): • Projection: Equidistant conic • 1st Standard parallel: 80 • 2st Standard parallel: 70 • Central meridian: -9 • Origin Latitude: 90 • False easting: 805000 • False northing: 3140000 Model dimensions: The horizontal dimensions of the model are 2000 km x 2500 km. The total depth of the model is 300 km. Model bounds in ECNA: Easting: from 0 m to 2000000 m Northing: from 0 m to 2500000 m Model bounds in longitude/latitude (WGS 84): Longitude: from -61° to 54° Latitude: from 60° to 84° Extended model bounds in ECNA: Easting: from -500000 m to 2500000 m Northing: from -500000 m to 3000000 m File description: We provide a set of grid files that collectively allow recreating the 3D geological model which covers the North East Atlantic Ocean and its adjacent areas, including the easternmost area of Greenland, the western coast of Norway, Iceland and Svalbard. The provided structural model consists of 11 units including: (i) sea water and ice; (ii) two layers of sedimentary cover: a shallow and a deep unit; (iii) five crystalline crust units composed of an upper and a lower continental crustal, an oceanic crust and two units of lower crustal bodies (LCB); (iv) two lithospheric mantle units: a continental and an oceanic layer. The structural model has a dimension of 2000 km x 2500 km x 300 km and is provided in regularly spaced grids of 10 km, which are identical for all model units. For the gravity modelling the model limits have been extended by 500 km horizontally in all directions including constraining information for the extended region. The extended model horizons are represented in the density model. Additionally, we provide gravity data, density voxel cube and related tomography data. Files are subdivided into five categories: 1. Structural interface 2. Density model horizon 3. Gravity data 4. Density voxel cube 5. Tomography data
    Keywords: North East Atlantic ; 3D structural model ; georeferenced grids ; crustal structure ; subsurface geology ; layer thickness ; crystalline crust ; lithospheric mantle ; gravity ; tomography ; density ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ANOMALIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; EARTH SCIENCE SERVICES 〉 MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-09
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. Raw gravity and local atmospheric pressure records sampled at second and the same records decimated at 1‐minute samples are provided as Level 1 products of the IGETS network for the Pecný station (https://doi.org/10.5880/igets.pe.l1.001). The corrected 1-minute samples have been prepared by operators of the station, from raw decimated 1-minute samples, by following steps: 1) The 1-minute samples have been used to compute residual gravity signal by using the SG calibration factor and applying corrections from tides, atmosphere and polar motion. 2) These data have been associated with auxiliary data from the SG (Dewar Pressure, Tx/Ty balance, Neck temperature etc.) and information from LOG files. 3) Gaps have been created in the residual gravity signal according to auxiliary data and log files. Moreover, gaps were created also for large disturbances, where the residual signal exceeding 20 nm/s^2. 4) Gaps up to 24 hours were filled by a linear fit. 5) Spikes exceeding 5 nm/s^2 were removed by using TSOFT. 6) Steps were applied only in exceptional cases in accordance with LOG files. 7) The cleaned residual signal was converted to corrected 1-minute samples by using the same corrections and the calibration factor as used in 1). Therefore, the corrected 1-minute signal is again in units as the raw data (Volt). Note, since 31 October 2017, the OSG-050 is running at new site (NGL - new gravimetric laboratory at Pecný) according to https://doi.org/10.5880/igets.pe.l1.001.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; geophysics ; geodesy ; hydrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; environment 〉 geophysical environment ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GRAVITY STATIONS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SGO ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Gravimeters 〉 SUPERCONDUCTING GRAVIMETER ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-06
    Description: Abstract
    Description: Operational GRACE Follow-On monthly gravity field solutions starting from June 2018 up to degree and order 96 computed with the Celestial Mechanics Approach at AIUB (release 02). The time series is a loose continuation of AIUB-RL02 GRACE monthly gravity field time series and is an update of the operational GRACE Follow-On monthly gravity field time series (https://doi.org/10.5880/ICGEM.2020.001) using Level-1B GRACE Follow-On data and operational accelerometer transplant data from TUG (Institute of Geodesy, TU Graz, Working Group Theoretical Geodesy and Satellite Geodesy) and updated modelling strategies concerning data screening and weighting. The time series is reprocessed starting with June 2018. The dataset is created within the framework of the G3P project (https://www.g3p.eu/), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870353. The operational solution of release 02 provides a complete time series of GRACE Follow-on data derived monthly gravity field solutions, is regularly updated with new monthly solutions and features a consistent processing with an advanced noise modelling of GRACE Follow-On data. It is recommened for usage. It is strongly recommended to use release 02 and discontinue using release 01.
    Keywords: Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; Geopotential ; Gravity Field ; Time variable Gravity Field ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-06
    Description: Abstract
    Description: Operational GRACE Follow-On monthly gravity field solutions starting from June 2018 up to degree and order 96 computed with the Celestial Mechanics Approach at AIUB. The time series is a loose continuation of AIUB-RL02 GRACE monthly gravity field time series using Level-1B GRACE Follow-On data and operational accelerometer transplant data from IfG (Institute of Geodesy, TU Graz, Working Group Theoretical Geodesy and Satellite Geodesy) and updated background models. The dataset is created within the framework of the G3P project (https://www.g3p.eu/), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870353.
    Keywords: Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; Geopotential ; Gravity Field ; Time variable Gravity Field ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-25
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The SG site “Serrahn” is located in the TERENO Observatory in the nort-eastern German lowlands. The observatory contributes to investigating the regional impact of climate and land use change. At the IGETS site Serrahn, the mean annual temperature is 8.8 °C and mean annual precipitation is 591 mm. The land cover is mainly characterized as a mixed forest, dominated by European beech and Scots pine. Influenced by the last glaciation in an outwash close to the terminal morraine, the uppermost soil layer of the site consists of aeolian sands up to a depth of 450 cm, followed by coarser sandy material with intercalated till layers. The unconfined groundwater level is at about 14 m below surface. There is hardly any human activity (e.g., traffic) at this quiet forest site. The nearest town is Neustrelitz at a distance of 5 km. Since December 2017, the superconducting gravimeter iGrav-033 is operated outdoors at this forest location (Latitude: 53.3392 N, Longitude: 13.17413 E, Elevation: 79.60 m). The gravimeter is installed in a dedicated field enclosure on top of a concrete pillar with an area of 1.1 m x 1.1 m at an elevation of 0.80 m above the terrain surface. The pillar has been build to a depth of 2.00 m below the surface. One additional pillar (also 1.1 m x 1.1 m, at surface level) is located right next to the iGrav installation and is used for repeated observations with absolute gravimeters (AG). At the site, meteorological (precipitation, air temperature, humidity, air pressure) and hydrological (groundwater, soil moisture, sapflow, throughfall) parameters are monitored by different sensors. Raw gravity and local atmospheric pressure records sampled at second intervals and the same records decimated at 1‐minute samples are provided as Level 1 products to the IGETS network.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; geophysics ; geodesy ; hydrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; environment 〉 geophysical environment ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GRAVITY STATIONS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SGO ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Gravimeters 〉 SUPERCONDUCTING GRAVIMETER ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-04-30
    Description: Abstract
    Description: The model named EHFM_Earth_7200 was derived by layer-based forward modeling technique in ellipsoidal harmonics, the maximum degree of this model reaches 7200. The relief information was provided by Earth2014 relief model. EHFM_Earth_7200 provides very detailed (~3 km) information for the Earth’s short-scale gravity field, and it is expected to be able to augment or refine existing global gravity models. To meet the existing standard, here we provide spherical harmonic coefficients, which are transformed from original ellipsoidal harmonic coefficients. The maximum degree of the spherical harmonic coefficients is 7300.
    Description: Methods
    Description: - Compute global equiangular reduced latitude grids from degree 10800 Earth2014 SHCs and expanded these grids into EHCs. The grids are band-limited in spherical harmonics instead of in ellipsoidal harmonics so extra degrees beyond the truncation degree are also calculated. We obtained surface EHCs up to degree and order (d/o) 11000 but truncated them to d/o 7200. - Calculate potential models of three layers (crust, water and ice) separately from Earth2014 reliefs by new developed ellipsoidal harmonic forward modeling formulas. The densities of the three layers are 2670, 1030, and 917 kg/m^3. - Sum up results from the three layers and obtain EHFM_Earth_7200 ellipsoidal harmonic coefficients. - Convert ellipsoidal harmonic coefficients to spherical harmonic coefficients. The maximum degree of the spherical harmonic coefficients is 7300.
    Keywords: Gravity forward modeling ; Ellipsoidal topographic potential ; Spectral domain ; Layer concept ; ICGEM ; geodesy ; topographic gravity field model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-05-02
    Description: Abstract
    Description: The Uruguayan gravimetric quasi-geoid model UruQGeoide110 was calculated by the Military Geographic Institute (IGM) in 2023. The extent is from 29.5° S to 35.5° S in latitude, and 52.5° W to 59.5° W in longitude, covering parts of Argentina and Brazil, with a grid resolution of 1´ x 1´. The geodetic reference system is SIRGAS ROU-98 (the reference ellipsoid is GRS80). The model is a combination of the EIGEN-6C4 geopotential model up to degree and order of 720, 10,429 land gravimetric stations plus 10,089 free air gravity anomalies in marine areas, based on the DTU13 model. The terrain data at the final 90 m resolution was taken from a 2017 Lidar survey in Uruguay with a 2.5 m initial resolution and SRTM (V2) for the external terrestrial data. The DT18 bathymetry model was used for the marine areas. Due to the total terrain data points (about 104 million), the overall area was divided into 4 overlapped blocks in the framework of the remove-compute-restore procedure. The reduced height anomalies were computed from the reduced gravity anomalies with Stokes 1D FFT and Wong Gore´s kernel modification (170-180 degrees) and the quasi-geoid model was finally obtained by adding back the residual terrain model effects and the contribution of the global geopotential model. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Uruguay ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-02
    Description: Abstract
    Description: The official Uruguayan geoid model, called IGM110, was calculated by the Military Geographic Institute (IGM) in 2023 and consists of a grid of 1´ x 1´ geoidal undulations with a total of 151,981 points. The geodetic reference system is SIRGAS ROU-98 (the reference ellipsoid is GRS80). The extent is from 29.5° S to 35.5° S in latitude, and 52.5° W to 59.5° W in longitude, covering parts of Argentina and Brazil. The model is a combination of the EIGEN-6C4 geopotential model up to degree and order of 720, 10,429 land gravimetric stations plus 10,089 free air gravity anomalies in marine areas, based on the DTU13 model. The terrain data at the final 90 m resolution was taken from a 2017 Lidar survey in Uruguay with a 2.5 m initial resolution and SRTM (V2) for the external terrestrial data. The DT18 bathymetry model was used for the marine areas. Due to the total terrain data points (about 104 million), the overall area was divided into 4 overlapped blocks in the framework of the remove-compute-restore procedure. The reduced height anomalies were computed from the reduced gravity anomalies with Stokes 1D FFT and Wong Gore´s kernel modification (170-180 degrees). After adding back the residual terrain model effects and the contribution of the global geopotential model, the obtained quasi-geoid was transformed into a geoid model via Bouguer anomalies, even if the difference between the two models is just a few mm. A comparison with 51 GNSS/levelling stations shows a standard deviation of 10 cm. The resulting geoid was also adapted by a bias and a tilt to the national vertical system, Cabildo 1948, by fitting GNSS/levelling observations, with a mean of 1 cm and a standard deviation of 7 cm. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Uruguay ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-02
    Description: Abstract
    Description: The Uruguayan gravimetric geoid model UruGeoide110 was calculated by the Military Geographic Institute (IGM) in 2023. The extent is from 29.5° S to 35.5° S in latitude, and 52.5° W to 59.5° W in longitude, covering parts of Argentina and Brazil, with a grid resolution of 1´ x 1´. The geodetic reference system is SIRGAS ROU-98 (the reference ellipsoid is GRS80). The model is a combination of the EIGEN-6C4 geopotential model up to degree and order of 720, 10,429 land gravimetric stations plus 10,089 free air gravity anomalies in marine areas, based on the DTU13 model. The terrain data at the final 90 m resolution was taken from a 2017 Lidar survey in Uruguay with a 2.5 m initial resolution and SRTM (V2) for the external terrestrial data. The DT18 bathymetry model was used for the marine areas. Due to the total terrain data points (about 104 million), the overall area was divided into 4 overlapped blocks in the framework of the remove-compute-restore procedure. The reduced height anomalies were computed from the reduced gravity anomalies with Stokes 1D FFT and Wong Gore´s kernel modification (170-180 degrees). After adding back the residual terrain model effects and the contribution of the global geopotential model, the obtained quasi-geoid was transformed into a geoid model via Bouguer anomalies, even if the difference between the two models is just a few mm. A comparison with 51 GNSS/levelling stations shows a standard deviation of 10 cm. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Uruguay ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...