ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-26
    Description: Erosion is a severe threat to the sustainable use of agricultural soils. However, the structural resistance of soil against the disruptive forces steppe soils experience under field conditions has not been investigated. Therefore, 132 topsoils under grass‐ and cropland covering a large range of physico‐chemical soil properties (sand: 2–76%, silt: 18–80%, clay: 6–30%, organic carbon: 7.3–64.2 g kg−1, inorganic carbon: 0.0–8.5 g kg−1, pH: 4.8–9.5, electrical conductivity: 32–946 μS cm−1) from northern Kazakhstan were assessed for their potential erodibility using several tests. An adjusted drop‐shatter method (low energy input of 60 Joule on a 250‐cm3 soil block) was used to estimate the stability of dry soil against weak mechanical forces, such as saltating particles striking the surface causing wind erosion. Three wetting treatments with various conditions and energies (fast wetting, slow wetting, and wet shaking) were applied to simulate different disruptive effects of water. Results indicate that aggregate stability was higher for grassland than cropland soils and declined with decreasing soil organic carbon content. The results of the drop‐shatter test suggested that 29% of the soils under cropland were at risk of wind erosion, but only 6% were at high risk (i.e. erodible fraction 〉60%). In contrast, the fast wetting treatment revealed that 54% of the samples were prone to become “very unstable” and 44% “unstable” during heavy rain or snowmelt events. Even under conditions comparable to light rain events or raindrop impact, 53–59% of the samples were “unstable.” Overall, cropland soils under semi‐arid conditions seem much more susceptible to water than wind erosion. Considering future projections of increasing precipitation in Kazakhstan, we conclude that the risk of water erosion is potentially underestimated and needs to be taken into account when developing sustainable land use strategies. Highlights Organic matter is the important binding agent enhancing aggregation in steppe topsoils. Tillage always declines aggregate stability even without soil organic carbon changes. All croplands soil are prone to wind or water erosion independent of their soil properties. Despite the semi‐arid conditions, erosion risk by water seems higher than by wind.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:631.4 ; climate change ; land use ; soil organic carbon ; soil texture ; water erosion ; wind erosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-28
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paight, C., Johnson, M., Lasek‐Nesselquist, E., & Moeller, H. Cascading effects of prey identity on gene expression in a kleptoplastidic ciliate. Journal of Eukaryotic Microbiology, 70(1), (2022): e12940, https://doi.org/10.1111/jeu.12940.
    Description: Kleptoplastidic, or chloroplast stealing, lineages transiently retain functional photosynthetic machinery from algal prey. This machinery, and its photosynthetic outputs, must be integrated into the host's metabolism, but the details of this integration are poorly understood. Here, we study this metabolic integration in the ciliate Mesodinium chamaeleon, a coastal marine species capable of retaining chloroplasts from at least six distinct genera of cryptophyte algae. To assess the effects of feeding history on ciliate physiology and gene expression, we acclimated M. chamaeleon to four different types of prey and contrasted well-fed and starved treatments. Consistent with previous physiological work on the ciliate, we found that starved ciliates had lower chlorophyll content, photosynthetic rates, and growth rates than their well-fed counterparts. However, ciliate gene expression mirrored prey phylogenetic relationships rather than physiological status, suggesting that, even as M. chamaeleon cells were starved of prey, their overarching regulatory systems remained tuned to the prey type to which they had been acclimated. Collectively, our results indicate a surprising degree of prey-specific host transcriptional adjustments, implying varied integration of prey metabolic potential into many aspects of ciliate physiology.
    Description: This work was supported by a grant from the Simons Foundation (Award # 689265 to HVM). Research was sponsored by the U.S. Army Research Office and accomplished under contract W911NF-19-D-0001 for the Institute for Collaborative Biotechnologies.
    Keywords: Acquired metabolism ; Cryptophyte ; Mesodinium chamaeleon ; Photophysiology ; Transcriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-22
    Description: Phenological responses to climate change frequently vary among trophic levels, which can result in increasing asynchrony between the peak energy requirements of consumers and the availability of resources. Migratory birds use multiple habitats with seasonal food resources along migration flyways. Spatially heterogeneous climate change could cause the phenology of food availability along the migration flyway to become desynchronized. Such heterogeneous shifts in food phenology could pose a challenge to migratory birds by reducing their opportunity for food availability along the migration path and consequently influencing their survival and reproduction. We develop a novel graph-based approach to quantify this problem and deploy it to evaluate the condition of the heterogeneous shifts in vegetation phenology for 16 migratory herbivorous waterfowl species in Asia. We show that climate change-induced heterogeneous shifts in vegetation phenology could cause a 12% loss of migration network integrity on average across all study species. Species that winter at relatively lower latitudes are subjected to a higher loss of integrity in their migration network. These findings highlight the susceptibility of migratory species to climate change. Our proposed methodological framework could be applied to migratory species in general to yield an accurate assessment of the exposure under climate change and help to identify actions for biodiversity conservation in the face of climate-related risks.
    Keywords: bird migration ; climate change ; graph-based approach ; heterogeneous shifts ; network integrity ; phenological asynchrony ; vegetation phenology
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-06
    Description: Aim Species have different distribution patterns across the globe and among biogeographical regions. The Nearctic and Palaearctic regions share lineages because of their parallel biogeographic histories and ecological conditions. As the number of phylogenetic studies increases, there are more insights into past exchange events between these two regions and their effects on the current distribution of diversity. However, several groups have not been tested and an overall generalization is still missing. Here, we analyse the biogeographic history across multiple genera of odonates to elucidate a general process of species exchange, vicariance and species divergence between these two regions. Location The Holarctic, including the entire Nearctic and the East and West Palaearctic. Taxon 14 genera of Odonata (Insecta). Methods We reconstructed a time-calibrated phylogenetic tree for each genus to determine species relationships and divergence time using 3614 COI sequences of 259 species. Biogeographic ancestral range estimation was inferred for each phylogeny using BioGeoBEARS. Preferred habitat (lotic versus lentic) was established for each species. Results Exchange events were not restricted in time, direction or either lentic habitat or lotic habitat. Most genera crossed between both regions only once, and it was mainly across the Beringia, while three diverse anisopteran genera revealed multiple exchanges. Recent exchanges during the Pleistocene were associated with cold-dwelling and lentic species. Main Conclusions Our finding reveals the absence of a generalizable pattern of species exchange and divergence between the Nearctic and Palaearctic regions; instead, we found lineage-specific biogeographic patterns. This finding highlights the complexity of drivers and functional traits that shaped current diversity patterns. Moreover, it emphasizes that general conclusions cannot be formulated based on one single clade.
    Keywords: biogeography ; climate change ; damselflies ; dragonflies ; Holarctic
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...