ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • 05.08. Risk  (4)
  • MDPI  (4)
  • American Chemical Society
  • American Physical Society (APS)
  • Cell Press
  • 2020-2024  (4)
  • 1
    Publication Date: 2023-02-02
    Description: The re-mobilization of volcaniclastic material poses a hazard factor which, although it decreases with time since the last eruption, remains present in the hydrographic basins of volcanic areas. Herein, we present the results of the numerical modelling of erosive phenomena of volcanic deposits, as well as of flooding in the volcanic area. The proposed approach includes runoff estimation, land use analysis, and the application of hydraulic and erosion modelling. It exploits the Iber software, a widely used and validated model for rainfall-runoff, river flooding, and erosion and sediment transport modelling. The methodology was applied to the Island of Vulcano (Italy), known for the erosion phenomena that affect the slopes of one of its volcanic cones (La Fossa cone). The rainfall excess was calculated using a 19-year dataset of hourly precipitations, and the curve number expressed by the information on soil cover in the area, derived from the land cover and land use analysis. The erosion and flow models were performed considering different rainfall scenarios. Results show a particularly strong erosion, with thicknesses greater than 0.4 m. This is consistent with field observations, in particular with some detailed data collected both after intense events and by long-term observation. Results of the hydraulic simulations show that moderate and torrential rainfall scenarios can lead to flood levels between 0.2 and 0.6 m, which mostly affect the harbours located in the island’s inhabited area.
    Description: This project was partially funded by the “Fondi di Ateneo 2022 (ex 60%)” by the Università degli Studi di Firenze (project “VOLFLANK—Use of remote sensing data for the stability analysis of active volcanoes”; P.I.: F.D.T.). A.F. and M.F. carried out this work in the frame of INGV Progetti Ricerca Libera 2022 (project “VOLF—VOlcaniclastic debris flows at La Fossa cone (Volcano Island): evolution and hazard implication”).
    Description: Published
    Description: 16549
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: erosion modelling ; floods modelling ; numerical models ; Iber software ; volcaniclastic deposits ; floods hazard ; Island of Vulcano ; Aeolian Archipelago ; geomorphological hazards ; 04.08. Volcanology ; 05.08. Risk ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-07
    Description: Natural hazards are increasingly threatening our communities; hence it is imperative to provide communities with reliable information on possible impacts of such disasters, and on resilience measures that can be adopted to recover from disasters. To increase the engagement of various stakeholders in decision-making processes related to resilience to natural hazards, problem-specific information needs to be presented to them in a language understandable to non-experts in the field. To this end, this paper illustrates experimentation with low-code platforms for fast digitalization of resilience reports, incorporating the perspectives of various stakeholders in the analysis, thus making informed decision-making practicable. We present a co-creation-based approach to develop GIS-based user-friendly dashboards in support to the identification of resilience strategies against natural hazards; this approach has been developed within the framework of the European project ARCH. Urban areas are regarded as complex social-ecological systems whose various dimensions should be considered in this resilience endeavor, during all phases of the Disaster Risk Reduction and Climate Change Adaptation cycle. The work presented in this paper specifically targets the possible impacts and risks that might affect the cultural heritage subsystems of our cities, generally underrepresented in the international literature related to urban resilience assessment. We describe how we applied our approach to the Camerino municipality, a historic Italian town exposed to seismic risk, which was struck by a severe earthquake sequence in 2016–2017 and discuss the results of our experience.
    Description: The research activities have been funded by the project “ARCH—Advancing Resilience of historic areas against Climate-related and other Hazards” funded by Horizon 2020—European Union Research and Innovation Program under grant agreement No. 820999. The sole responsibility for the content of this publication lies with the authors. It does not necessarily represent the opinion of the European Union. Neither the EASME, nor REA, nor the European Commission is responsible for any use that may be made of the information contained therein. The work is also funded by Project 1.7 “Technologies for the efficient penetration of the electric vector in the final uses” within the “Electrical System Research” PTR 22–24.
    Description: Published
    Description: 65
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Keywords: urban resilience ; cultural heritage ; geographic information system ; seismic risk ; knowledge representation ; climate change ; 05.08. Risk ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-02
    Description: Mediterranean coasts are prone to tsunamis due to high seismicity in some well-known areas near plate margins. However, tsunamis have a low frequency of occurrence despite having highly destructive potential. The low frequency of occurrence and historicity of the most destructive events lead to minimizing or neglecting this risk. Past research identified socio-demographic and spatial factors that may affect tsunami risk perception. This research is based on CATI survey (Computer Assisted Telephone Interview) to a sample of 5842 respondents designed to investigate whether and how risk perception and risk knowledge were affected by a major event such as the 1908 Reggio Calabria Messina tsunami, by making a comparison between areas hit by that event and unaffected areas, also providing some explanatory hypotheses. Despite differences between Calabria and Sicily, data show higher levels of tsunami risk perception in the area affected by the 1908 event, along with a major role of interpersonal sources, playing a relevant role in information gathering and understanding. Research also suggests the need to better integrate different sources of knowledge to improve people’s understanding so as to effectively cope with tsunami risk.
    Description: Published
    Description: 2787
    Description: OS: Terza missione
    Description: JCR Journal
    Keywords: tsunami ; risk communication ; risk perception ; local knowledge ; media ; scientific communication ; messina ; reggio calabria ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-21
    Description: How (in)formal should the classic expression describing risk as the product of hazard, exposure, and vulnerability be considered? What would be the most complete way to describe the process of risk mitigation? These are the questions we try to answer here, using a formal, mathematically sound yet abstract description of hazard, exposure, vulnerability, and risk. We highlight the elements that can be affected for the purpose of mitigation and show how this can improve the quantitative assessment of the procedural aspects of risk mitigation, both long- and short-term, down to the timescale of emergency response.
    Description: Published
    Description: 265
    Description: OSV4: Preparazione alle crisi vulcaniche
    Description: JCR Journal
    Keywords: risk ; vulnerability ; exposure ; hazard ; mitigation ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...