ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Buffering capacity  (1)
  • Canadian Arctic Archipelago  (1)
  • American Geophysical Union  (2)
  • American Association for the Advancement of Science (AAAS)
  • 2020-2024  (2)
Collection
Publisher
  • American Geophysical Union  (2)
  • American Association for the Advancement of Science (AAAS)
Years
  • 2020-2024  (2)
Year
  • 1
    Publication Date: 2023-02-28
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(8), (2022): e2022GB007320, https://doi.org/10.1029/2022GB007320.
    Description: Biogeochemical cycles in the Arctic Ocean are sensitive to the transport of materials from continental shelves into central basins by sea ice. However, it is difficult to assess the net effect of this supply mechanism due to the spatial heterogeneity of sea ice content. Manganese (Mn) is a micronutrient and tracer which integrates source fluctuations in space and time while retaining seasonal variability. The Arctic Ocean surface Mn maximum is attributed to freshwater, but studies struggle to distinguish sea ice and river contributions. Informed by observations from 2009 IPY and 2015 Canadian GEOTRACES cruises, we developed a three-dimensional dissolved Mn model within a 1/12° coupled ocean-ice model centered on the Canada Basin and the Canadian Arctic Archipelago (CAA). Simulations from 2002 to 2019 indicate that annually, 87%–93% of Mn contributed to the Canada Basin upper ocean is released by sea ice, while rivers, although locally significant, contribute only 2.2%–8.5%. Downstream, sea ice provides 34% of Mn transported from Parry Channel into Baffin Bay. While rivers are often considered the main source of Mn, our findings suggest that in the Canada Basin they are less important than sea ice. However, within the shelf-dominated CAA, both rivers and sediment resuspension are important. Climate-induced disruption of the transpolar drift may reduce the Canada Basin Mn maximum and supply downstream. Other micronutrients found in sediments, such as Fe, may be similarly affected. These results highlight the vulnerability of the biogeochemical supply mechanisms in the Arctic Ocean and the subpolar seas to climatic changes.
    Description: This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Climate Change and Atmospheric Research Grant: GEOTRACES (RGPCC 433848-12) and VITALS (RGPCC 433898), an NSERC Discovery Grant (RGPIN-2016-03865) to SEA, and by the University of British Columbia through a four year fellowship to BR. Computing resources were provided by Compute Canada (RRG 2648 RAC 2019, RRG 2969 RAC 2020, and RRG 1541 RAC 2021).
    Keywords: GEOTRACES ; Arctic Ocean ; Trace elements ; Canadian Arctic Archipelago ; Ocean modeling ; Micronutrients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-20
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 127(8), (2022): e2022JG006810, https://doi.org/10.1029/2022jg006810.
    Description: Submarine groundwater discharge (SGD) has been widely recognized as an important source of dissolved nutrients in coastal waters and affects nutrient biogeochemistry. In contrast, little information is available on SGD impacts on coastal carbon budgets. Here, we assessed the SGD and associated carbon (dissolved inorganic carbon [DIC] and total alkalinity [TA]) fluxes in Liaodong Bay (the largest bay of the Bohai Sea, China) and discussed their border implications for coastal DIC budget and buffering capacity. Based on 223Ra and 228Ra mass balance models, the SGD flux was estimated to be (0.92–1.43) × 109 m3 d−1. SGD was the largest contributor of DIC, accounting for 55%–77% of the total DIC sources. The low ratio (〈1) of SGD-derived TA to DIC fluxes and negative correlation between radium isotopes and pH in seawater implied that SGD would potentially reduce seawater pH in Liaodong Bay. Combining the groundwater carbon data in Liaodong Bay with literature data, we found that the SGD-derived DIC flux off China was 4–9 times greater than those from rivers. By analyzing the TA/DIC ratios in groundwater along the Chinese coast and related carbon fluxes, SGD was thought to partially reduce the CO2 buffer capacity in receiving seawater. These results obtained at the bay scale and national scale suggest that SGD is a significant component of carbon budget and may play a critical role in modulating coastal buffering capacity and atmospheric CO2 sequestration.
    Description: his research was supported by National Natural Science Foundation of China (Grant Nos. 42130703, 42007170) and the Science, Technology and Innovation Commission of Shenzhen (Grant No. 20200925174525002.
    Description: 2023-01-20
    Keywords: Submarine groundwater discharge ; Radium isotopes ; Dissolved inorganic carbon ; Total alkalinity ; Carbon budgets ; Buffering capacity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...