ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (69)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (38)
  • IntechOpen
  • Taylor & Francis
  • 2020-2024  (69)
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    Publication Date: 2024-06-24
    Description: The simulation of deep-sea conditions in laboratories is technically challenging but necessary for experiments that aim at a deeper understanding of physiological mechanisms or host-symbiont interactions of deep-sea organisms. In a proof-of-concept study, we designed a recirculating system for long-term culture (〉2 yr) of deep-sea mussels Gigantidas childressi (previously Bathymodiolus childressi). Mussels were automatically (and safely) supplied with a maximum stable level of ~60 μmol L−1 methane in seawater using a novel methane–air mixing system. Experimental animals also received daily doses of live microalgae. Condition indices of cultured G. childressi remained high over the years, and low shell growth rates could be detected, too, which is indicative of positive energy budgets. Using stable isotope data, we demonstrate that G. childressi in our culture system gained energy, both, from the digestion of methane-oxidizing endosymbionts and from digesting particulate food (microalgae). Limitations of the system, as well as opportunities for future experimental approaches involving deep-sea mussels, are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-06
    Description: Sponges (Porifera) are one of the most ancient animals present on the planet. They are aquatic, filter-feeding sessile metazoans that rely on asexual and sexual reproduction. These animals have a long history on Earth and had plenty of time to develop different reproductive strategies. Here, we review different aspects of the physiology of reproduction in Porifera. This chapter is divided into six sections. In the first section, we present general features of sponge reproduction, such as factors that trigger the onset of their reproduction, as well as the periodicity of their reproductive cycles. The molecular basis of the hormonal control of gametogenesis is presented although sponges have no endocrine system. The second section deals with gametogenesis, 2including how sex and the germline are determined and maintained in this group, how oocytes and spermatozoa are formed and nourished, and how they behave once released. The third section reviews different topics about the reproductive mode. Here, we discuss the dichotomy in reproductive mode: oviparity vs. viviparity, the spatial distribution of the reproductive elements in the sponge tissue, the effect of symbiosis in reproduction (and vice-versa), and energetic trade-offs during reproduction. The fourth section describes fertilization, and we cover the factors controlling the spawning events and how the sperm are attracted and recognized by the egg. The diversity of developmental modes, the molecular control of sponge embryonic development, and the maternal-embryo relationship are discussed in the fifth section. Finally, in the sixth section, the types of asexual reproduction, factors influencing budding, gemmulation, hibernation, and gemmule development are described. Knowledge about the physiology of reproduction of sponges is still fragmentary and based on studies in very few species. Consequently, there are many generalizations that need further investigation. However, evidence-based on morphological, experimental, and molecular data demonstrates that their physiology is not very different from that of other metazoans
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Taylor & Francis
    Publication Date: 2024-05-23
    Description: The extent of our duties to mitigate climate change is commonly conceptualized in terms of temperature goals like the 1.5°C and the 2°C target and corresponding emissions budgets. While I do acknowledge the political advantages of any framework that is relatively easy to understand, I argue that this particular framework does not capture the true extent of our mitigation duties. Instead I argue for a more differentiated approach that is based on the well-known distinction between subsistence and luxury emissions. At the heart of this approach lies the argument that we have no budget of substantial, net-positive luxury emissions left. In a world in which dangerous climate change has begun, we must expect all further substantial, net-positive luxury emissions to cause harm. Since they lack the kind of justification needed for them to be nevertheless permissible, I conclude that we must stop emitting them with immediate effect. I also briefly discuss the difficult case of subsistence emissions and offer some first thoughts on the morality of a third category of emissions, what I call ‘transition emissions’.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    Publication Date: 2024-05-06
    Description: Scientific Significance Statement Millions of predator–prey interactions between deep-diving toothed whales and cephalopods occur daily in the dark deep sea. While predatory whales developed traits to detect and hunt their prey, cephalopods had to expand their anti-predatory strategies specialized for visual predators, to counteract acoustic predators. Since toothed whale-cephalopod interactions have never been directly observed in the deep sea, it remains unknown what selective pressures and traits evolved from this arms race. Combining current knowledge, we formalize four hypotheses and associated research approaches that will guide future investigation on oceanic predator–prey systems. We identify whale echolocation as an unprecedented armament to hunt distant prey and propose that deep-sea squids avoid acoustic predators by (1) reducing their acoustic cross-section through body shape and posture, (2) deep-sea migration, and (3) not schooling. Toothed whale predation emerges as a potential driver of the cephalopod live-fast-die-young strategy—which may now leave cephalopods at competitive advantage under global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-02
    Description: Bacterial sulfate reduction (SR) is often determined by radiotracer techniques using 35S‐labeled sulfate. In environments featuring simultaneous sulfide oxidation, SR can be underestimated due to re‐oxidation of 35S‐sulfide. Recycling of 35S‐tracer is expected to be high in sediment with low concentrations of pore‐water sulfide and high abundance of giant filamentous sulfur‐oxidizing bacteria (GFSOB). Here, we applied a sulfide‐spiking method, originally developed for water samples, to sediments along a shelf‐slope transect (72, 128, 243, 752 m water depth) traversing the Peruvian oxygen minimum zone. Sediment spiked with unlabeled sulfide prior to 35S‐sulfate injection to prevent radiotracer recycling was compared to unspiked sediment. At stations characterized by low natural sulfide and abundant GFSOB (128 and 243 m), the method revealed 1–3 times higher SR rates in spiked sediment. Spiking had no effect on SR in sediment with high natural sulfide despite presence of GFSOB (72 m). Bioturbated sediment devoid of GFSOB (752 m) showed elevated SR in spiked samples, likely from artificial introduction of sulfidic conditions. Sulfide oxidation rates at the 128 and 243 m station, derived from the difference in SR between spiked and unspiked sediment, approximated rates of dissimilatory nitrate reduction to ammonium by GFSOB. Gross SR contributed considerably to benthic dissolved inorganic carbon fluxes at the three shallowest station, confirming that SR is an important process for benthic carbon respirations within the oxygen minimum zone. We recommend to further explore the spiking method to capture SR in sediment featuring low sulfide concentrations and high sulfur cycling by GFSOB.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-15
    Description: Promoting effects of aluminum addition on chlorophyll biosynthesis and growth of two cultured iron‐limited marine diatoms Linbin Zhou CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China Marine Biogeochemistry Division GEOMAR Helmholtz Centre for Ocean Research Kiel Germany University of Chinese Academy of Sciences Beijing China https://orcid.org/0000-0001-7230-4116 Fengjie Liu Marine Biogeochemistry Division GEOMAR Helmholtz Centre for Ocean Research Kiel Germany Grantham Institute—Climate Change and the Environment, Department of Life Sciences Imperial College London London UK Eric P. Achterberg Marine Biogeochemistry Division GEOMAR Helmholtz Centre for Ocean Research Kiel Germany Anja Engel Marine Biogeochemistry Division GEOMAR Helmholtz Centre for Ocean Research Kiel Germany https://orcid.org/0000-0002-1042-1955 Peter G.C. Campbell Institut National de la Recherche Scientifique Centre Eau Terre Environnement Quebec Canada https://orcid.org/0000-0001-7160-4571 Claude Fortin Institut National de la Recherche Scientifique Centre Eau Terre Environnement Quebec Canada https://orcid.org/0000-0002-2479-1869 Liangmin Huang CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China University of Chinese Academy of Sciences Beijing China Yehui Tan CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China University of Chinese Academy of Sciences Beijing China Abstract Aluminum (Al) may play a role in the ocean's capacity for absorbing atmospheric CO 2 via influencing carbon fixation, export, and sequestration. Aluminum fertilization, especially in iron (Fe)‐limited high‐nutrient, low‐chlorophyll ocean regions, has been proposed as a potential CO 2 removal strategy to mitigate global warming. However, how Al addition would influence the solubility and bioavailability of Fe as well as the physiology of Fe‐limited phytoplankton has not yet been examined. Here, we show that Al addition (20 and 100 nM) had little influence on the Fe solubility in surface seawater and decreased the Fe bio‐uptake by 11–22% in Fe‐limited diatom Thalassiosira weissflogii in Fe‐buffered media. On the other hand, the Al addition significantly increased the rate of chlorophyll biosynthesis by 45–60% for Fe‐limited T. weissflogii and 81–102% for Fe‐limited Thalassiosira pseudonana , as well as their cell size, cellular chlorophyll content, photosynthetic quantum efficiency ( F v / F m ) and growth rate. Under Fe‐sufficient conditions, the Al addition still led to an increased growth rate, though the beneficial effects of Al addition on chlorophyll biosynthesis were no longer apparent. These results suggest that Al may facilitate chlorophyll biosynthesis and benefit the photosynthetic efficiency and growth of Fe‐limited diatoms. We speculate that Al addition may enhance intracellular Fe use efficiency for chlorophyll biosynthesis by facilitating the superoxide‐mediated intracellular reduction of Fe(III) to Fe(II). Our study provides new evidence and support for the iron–aluminum hypothesis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Description: Nutrient transfer into the sunlit surface ocean by cyclonic eddies is potentially crucial for sustaining primary productivity in the stratified subtropical gyres. However, the nature of productivity enhancements, including the flow of matter to higher trophic levels and its impact on carbon fluxes, remain poorly resolved. Here, we report a detailed assessment of the biogeochemical response to a cyclonic eddy in the subtropical Northwest Pacific via a combination of ship‐based and autonomous platforms. Primary production was enhanced twofold within the eddy core relative to reference sites outside, whereas phytoplankton biomass even decreased. Pico‐phytoplankton (〈 2 μ m) dominated (〉 80%) both phytoplankton biomass and primary production inside and outside the eddy. The stimulated primary production in the eddy core was accompanied by an approximately twofold increase in mesozooplankton abundance, an approximately threefold increase in particle formation in the deep chlorophyll maximum layer, as well as significantly enhanced surface oceanic CO 2 uptake and net community production. We suggest these observations carry important implications for understanding carbon export in the subtropical ocean and highlight the need to include such subtropical eddy features in ocean carbon budget analyses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-08
    Description: The increasing demand for metals is pushing forward the progress of deep‐sea mining industry. The abyss between the Clarion and Clipperton Fracture Zones (CCFZ), a region holding a higher concentration of minerals than land deposits, is the most targeted area for the exploration of polymetallic nodules worldwide, which may likely disturb the seafloor across large areas and over many years. Effects from nodule extraction cause acute biodiversity loss of organisms inhabiting sediments and polymetallic nodules. Attention to deep‐sea ecosystems and their services has to be considered before mining starts but the lack of basic scientific knowledge on the methodologies for the ecological surveys of fauna in the context of deep‐sea mining impacts is still scarce. We review the methodology to sample, process and investigate metazoan infauna both inhabiting sediments and nodules dwelling on these polymetallic‐nodule areas. We suggest effective procedures for sampling designs, devices and methods involving gear types, sediment processing, morphological and genetic identification including metabarcoding and proteomic fingerprinting, the assessment of biomass, functional traits, fatty acids, and stable isotope studies within the CCFZ based on both first‐hand experiences and literature. We recommend multi‐ and boxcorers for the quantitative assessments of meio‐ and macrofauna, respectively. The assessment of biodiversity at species level should be focused and/or the combination of morphological with metabarcoding or proteomic fingerprinting techniques. We highlight that biomass, functional traits, and trophic markers may provide critical insights for biodiversity assessments and how statistical modeling facilitates predicting patterns spatially across point‐source data and is essential for conservation management.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-14
    Description: Glacio-eustatic cycles lead to changes in sedimentation on all types of continental margins. There is, however, a paucity of sedimentation rate data over eustatic sea-level cycles in active subduction zones. During International Ocean Discovery Program Expedition 375, coring of the upper ∼110 m of the northern Hikurangi Trough Site U1520 recovered a turbidite-dominated succession deposited during the last ∼45 kyrs (Marine Isotope Stages (MIS) 1–3). We present an age model integrating radiocarbon dates, tephrochronology, and δ18O stratigraphy, to evaluate the bed recurrence interval (RI) and sediment accumulation rate (SAR). Our analyses indicate mean bed RI varies from ∼322 yrs in MIS1, ∼49 yrs in MIS2, and ∼231 yrs in MIS3. Large (6-fold) and abrupt variations in SAR are recorded across MIS transitions, with rates of up to ∼10 m/kyr occurring during the Last Glacial Maximum (LGM), and 〈1 m/kyr during MIS1 and 3. The pronounced variability in SAR, with extremely high rates during the LGM, even for a subduction zone, are the result of changes in regional sediment supply associated with climate-driven changes in terrestrial catchment erosion, and critical thresholds of eustatic sea-level change altering the degree of sediment bypassing the continental shelf and slope via submarine canyon systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Phytoplankton stand at the base of the marine food-web, and play a major role in global carbon cycling. Rising CO2 levels and temperatures are expected to enhance growth and alter carbon:nutrient stoichiometry of marine phytoplankton, with possible consequences for the functioning of marine food-webs and the oceanic carbon pump. To date, however, the consistency of phytoplankton stoichiometric responses remains unclear. We therefore performed a meta-analysis on data from experimental studies on stoichiometric responses of marine phytoplankton to elevated pCO2 and 3–5° warming under nutrient replete and limited conditions. Our results demonstrate that elevated pCO2 increased overall phytoplankton C:N (by 4%) and C:P (by 9%) molar ratios under nutrient replete conditions, as well as phytoplankton growth rates (by 6%). Nutrient limitation amplified the CO2 effect on C:N and C:P ratios, with increases to 27% and 17%, respectively. In contrast to elevated pCO2, warming did not consistently alter phytoplankton elemental composition. This could be attributed to species- and study-specific increases and decreases in stoichiometry in response to warming. While our observed moderate CO2-driven changes in stoichiometry are not likely to drive marked changes in food web functioning, they are in the same order of magnitude as current and projected estimations of oceanic carbon export. Therefore, our results may indicate a stoichiometric compensation mechanism for reduced oceanic carbon export due to declining primary production in the near future
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...