ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (8)
  • E62
  • Textbook of mathematics
  • Egu-Copernicus  (6)
  • AGU  (1)
  • Berlin: Deutsches Institut für Wirtschaftsforschung (DIW)
  • Wiley
  • 2020-2024  (8)
  • 1
    Publication Date: 2024-01-26
    Description: We present developments to the physical model and the open-source numerical code IMEX_SfloW2D (de' Michieli Vitturi et al., 2019). These developments consist of a generalization of the depth-averaged (shallow-water) fluid equations to describe a polydisperse fluid–solid mixture, including terms for sedimentation and entrainment, transport equations for solid particles of different sizes, transport equations for different components of the carrier phase, and an equation for temperature/energy. Of relevance for the simulation of volcanic mass flows, vaporization and entrainment of water are implemented in the new model. The model can be easily adapted to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). The numerical algorithm and the code have been improved to allow for simulation of sub- to supercritical regimes and to simplify the setting of initial and boundary conditions. The code is open-source. The results of synthetic numerical benchmarks demonstrate the robustness of the numerical code in simulating transcritical flows interacting with the topography. Moreover, they highlight the importance of simulating transient in comparison to steady-state flows and flows in 2D versus 1D. Finally, we demonstrate the model capabilities to simulate a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles, through application to Krakatau volcano, showing the relevance, at a large scale, of non-linear fluid dynamic features, such as hydraulic jumps and von Kármán vortices, to flow conditions such as velocity and runout.
    Description: Ministero dell'Istruzione, dell'Università e della Ricerca (“Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese”, legge 145/2018), Horizon 2020 (EUROVOLC Transnational Access Grant) and the Natural Environment Research Council (grant nos. NE/T002026/1 and NE/S003509/1)
    Description: Published
    Description: 6309–6336
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: geophysical mass flows ; numerical model ; depth-averaged model ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-26
    Description: The 6-month-long effusive eruption at the Fagradalsfjall volcano in 2021 is the most visited eruption site in Iceland to date (June 2023), and it needed intense lava flow hazard assessment. In this study we document how strategies for lava flow modeling were implemented using the stochastic model MrLavaLoba to evaluate hazards during this effusive event. Overall, the purposes were threefold: (a) pre-eruption simulations to investigate potential lava inundation of critical infrastructure, (b) syn-eruption simulations for short-term (2-week time frame) lava flow hazard assessment and (c) syn-eruption simulations for long-term (months to years) hazard assessments. Additionally, strategies for lava barrier testing were developed, and syn-eruption topographic models were incorporated into simulations in near real time. The model provided promising results that were shared regularly at stakeholder meetings with the monitoring personnel, scientists and civil-protection representatives helping to identify potential short-term and long-term lava hazards. This included evaluation of the timing of barrier overflow and the filling and spilling of lava from one valley to another. During the crisis the MrLavaLoba model was updated to increase functionality such as by considering multiple active vents. Following the eruption, the model was optimized substantially, decreasing the computational time required for the simulations and speeding up the delivery of final products.
    Description: Published
    Description: 3147–3168
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Lava flows ; numerical model ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-03
    Description: In this study we present a novel general methodology for probabilistic volcanic hazard assessment (PVHA) for lahars. We apply the methodology to perform a probabilistic assessment in the Campanian Plain (southern Italy), focusing on syn-eruptive lahars from a reference size eruption from Somma–Vesuvius. We take advantage of new field data relative to volcaniclastic flow deposits in the target region (Di Vito et al., 2024b) and recent improvements in modelling lahars (de' Michieli Vitturi et al., 2024). The former allowed defining proper probability density functions for the parameters related to the flow initial conditions, and the latter allowed computationally faster model runs. In this way, we are able to explore the effects of uncertainty in the initial flow conditions on the invasion of lahars in the target area by sampling coherent sets of values for the input model parameters and performing a large number of simulations. We also account for the uncertainty in the position of lahar generation by running the analysis on 11 different catchments threatening the Campanian Plain. The post-processing of the simulation outputs led to the production of hazard curves for the maximum flow thickness reached on a grid of points covering the Campanian Plain. By cutting the hazard curves at selected threshold values, we produce a portfolio of hazard maps and probability maps for the maximum flow thickness. We also produce hazard surface and probability maps for the simultaneous exceeding of pairs of thresholds in flow thickness and dynamic pressure. The latter hazard products represent, on one hand, a novel product in PVHA for lahars and, on the other hand, a useful means of impact assessment by assigning a probability to the occurrence of lahars that simultaneously have a relevant flow thickness and large dynamic pressure.
    Description: Published
    Description: 459-476
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Lahar ; Somma-Vesuvius ; Volcanic Hazards ; Sub-Plinian eruptions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-03
    Description: Lahars represent some of the most dangerous phenomena in volcanic areas for their destructive power, causing dramatic changes in the landscape with no premonitory signs and impacting the population and infrastructure. In this regard, the Campanian Plain turns out to be very prone to the development of these phenomena, since the slopes of the Somma–Vesuvius and Campi Flegrei volcanoes, along with the Apennine reliefs, are mantled by pyroclastic deposits that can be easily remobilized, especially after intense and/or prolonged rainfall. This study focuses on the analysis of pyroclastic fall and flow deposits and of the syn- and post-eruptive lahar deposits related to two sub-Plinian eruptions of Vesuvius in 472 CE (Pollena) and 1631. To begin with, historical and field data from the existing literature and from hundreds of outcrops were collected and organized into a database, which was integrated with several new pieces of data. In particular, stratigraphic, sedimentological (facies analysis and laboratory), and archeological analyses were carried out, in addition to rock magnetic investigations and impact parameter calculations. The new data are also referenced to the finding of ash beds in more distal areas, which were included in new isopach maps for the two sub-Plinian eruptions. The results show that for both eruptions the distribution of the primary deposits is wider than previously known. A consequence of these results is that a wider areal impact should be expected in terms of civil protection, as the sub-Plinian scenario is the reference one for a future large eruption of Vesuvius. Such a distribution of the pyroclastic deposits directly affects the one of the lahar deposits, also because a significant remobilization took place during and after the studied eruptions, which involved distal phreatomagmatic ash. From these integrated analyses, it was possible to constrain the timing of the deposition and the kind of deposits remobilized (pyroclastic fall vs. flow), and it was possible to calculate the velocities and dynamic pressures of the lahars and ultimately infer the lahar transport and emplacement mechanisms. The multidisciplinary approach adopted in this work shows how it is crucial to assess the impact of lahars in densely populated areas even at distances of several to tens of kilometers from active volcanoes. This especially applies to large parts of the densely populated areas around Somma–Vesuvius up to the nearby Apennine valleys.
    Description: Published
    Description: 405-436
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Lahar ; Somma-Vesuvius ; Volcanic Hazards ; Sub-Plinian eruptions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-08
    Description: Vulcano is one of the seven volcanic islands composing the Aeolian Islands archipelago (Southern Italy), which also includes three other active volcanoes. The island was orig-inally a stratovolcano like Stromboli; afterwards, its shape turned towards a complex structure composed of several volcanic landforms of different sizes. This is due to the great variability of the tectonic and volcanic phenomena, presently showing a volcano made by two calderas, a lava dome complex and two small active cones. The largest of them is the tuff cone of La Fossa, hosted in the middle of a 3- km-wide caldera struc-ture (La Fossa caldera), whose borders are visible on the southern and western sides of the island. Its last eruption occurred in 1888–1890. At present, Vulcano is charac-terized by weak shallow seismicity and intense fumarolic activity mainly concentrated within the crater of the La Fossa cone and along its rims during a recent unrest phase started in 2021, and measured with a multiparametric monitoring network.
    Description: Published
    Description: 471-487
    Description: OSV4: Preparazione alle crisi vulcaniche
    Description: JCR Journal
    Keywords: Aeolian Islands, Vulcano ; multihazard ; plumbing system ; unrest ; volcanic history ; stratigraphy ; tectonics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-27
    Description: In recent years, there has been a growing inter- est in ensemble approaches for modelling the atmospheric transport of volcanic aerosol, ash, and lapilli (tephra). The development of such techniques enables the exploration of novel methods for incorporating real observations into tephra dispersal models. However, traditional data assimilation al- gorithms, including ensemble Kalman filter (EnKF) meth- ods, can yield suboptimal state estimates for positive-definite variables such as those related to volcanic aerosols and tephra deposits. This study proposes two new ensemble- based data assimilation techniques for semi-positive-definite variables with highly skewed uncertainty distributions, in- cluding aerosol concentrations and tephra deposit mass load- ing: the Gaussian with non-negative constraints (GNC) and gamma inverse-gamma (GIG) methods. The proposed meth- ods are applied to reconstruct the tephra fallout deposit re- sulting from the 2015 Calbuco eruption using an ensemble of 256 runs performed with the FALL3D dispersal model. An assessment of the methodologies is conducted consider- ing two independent datasets of deposit thickness measure- ments: an assimilation dataset and a validation dataset. Dif- ferent evaluation metrics (e.g. RMSE, MBE, and SMAPE) are computed for the validation dataset, and the results are compared to two references: the ensemble prior mean and the EnKF analysis. Results show that the assimilation leads to a significant improvement over the first-guess results ob- tained from the simple ensemble forecast. The evidence from this study suggests that the GNC method was the most skilful approach and represents a promising alternative for assimila- tion of volcanic fallout data. The spatial distributions of the tephra fallout deposit thickness and volume according to the GNC analysis are in good agreement with estimations based on field measurements and isopach maps reported in previ- ous studies. On the other hand, although it is an interesting approach, the GIG method failed to improve the EnKF analysis.
    Description: EU
    Description: Published
    Description: 3459–3478
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Data Assimilation ; Tephra deposits ; 05.05. Mathematical geophysics ; 01.01. Atmosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-10
    Description: We present results obtained via an innovative spacebome SAR interferometry algorithm showing that the Somma-Vesuvius volcanic complex, despite of its quiescent stage, is subject lo a particular deformation process. This is characterized by a rather continuous subsidence, revealed by ERS satellite data and levelling surveys, between 1992 and 2000. These deformations are mainly localized in two zones involving the Vesuvius cone and a narrow annular area that, although not fully continuously, extends around the base of the Somma edifice. We propose an interpretation of subsidence at both sites involving joint effects of gravitational sliding and extensional tectonic stress occurring at the contact between different lithological units. Some simple elastic models show how such localized subsidence can be generated. These results shed new light on the Vesuvius dynamics and, more generally, on the link between gravitational effects of volcano loading and seismic-deformative processes, which is a subject of intense scientific debate.
    Description: IREA-CNR, Istituto per il Rilevamento Elettromagnetico dell'Ambiente, National Research Council, Napoli, Italy. INGV-OV, Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli "Osservatorio Vesuviano", Napoli, Italy.
    Description: Published
    Description: 6.1-6.4
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: DIFSAR, levelling, Vesuvius ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-09-26
    Description: Volcanoes are known to be important emitters of atmospheric gases and aerosols, which for certain volcanoes can include halogen gases and in particular HBr. HBr emitted in this way can undergo rapid atmospheric oxidation chemistry (known as the bromine explosion) within the volcanic emission plume, leading to the production of bromine oxide (BrO) and ozone depletion. In this work, we present the results of a modelling study of a volcanic eruption from Mt Etna that occurred around Christmas 2018 and lasted 6 d. The aims of this study are to demonstrate and evaluate the ability of the regional 3D chemistry transport model Modèle de Chimie Atmosphérique de Grande Echelle (MOCAGE) to simulate the volcanic halogen chemistry in this case study, to analyse the variability of the chemical processes during the plume transport, and to quantify its impact on the composition of the troposphere at a regional scale over the Mediterranean basin. The comparison of the tropospheric SO2 and BrO columns from 25 to 30 December 2018 from the MOCAGE simulation with the columns derived from the TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements shows a very good agreement for the transport of the plume and a good consistency for the concentrations if considering the uncertainties in the flux estimates and the TROPOMI columns. The analysis of the bromine species' partitioning and of the associated chemical reaction rates provides a detailed picture of the simulated bromine chemistry throughout the diurnal cycle and at different stages of the volcanic plume's evolution. The partitioning of the bromine species is modulated by the time evolution of the emissions during the 6 d of the eruption; by the meteorological conditions; and by the distance of the plume from the vent, which is equivalent to the time since the emission. As the plume travels further from the vent, the halogen source gas HBr becomes depleted, BrO production in the plume becomes less efficient, and ozone depletion (proceeding via the Br+O3 reaction followed by the BrO self-reaction) decreases. The depletion of HBr relative to the other prevalent hydracid HCl leads to a shift in the relative concentrations of the Br− and Cl− ions, which in turn leads to reduced production of Br2 relative to BrCl. The MOCAGE simulations show a regional impact of the volcanic eruption on the oxidants OH and O3 with a reduced burden of both gases that is caused by the chemistry in the volcanic plume. This reduction in atmospheric oxidation capacity results in a reduced CH4 burden. Finally, sensitivity tests on the composition of the emissions carried out in this work show that the production of BrO is higher when the volcanic emissions of sulfate aerosols are increased but occurs very slowly when no sulfate and Br radicals are assumed to be in the emissions. Both sensitivity tests highlight a significant impact on the oxidants in the troposphere at the regional scale of these assumptions. All the results of this modelling study, in particular the rapid formation of BrO, which leads to a significant loss of tropospheric ozone, are consistent with previous studies carried out on the modelling of volcanic halogens.
    Description: Published
    Description: 10533–10561
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...