ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (567)
  • Oxford University Press  (476)
  • Seismological Society of America  (91)
  • 2020-2024  (567)
Collection
Years
Year
Journal
  • 1
    Publication Date: 2024-06-17
    Description: Thermobarometry provides a critical means of assessing locations of magma storage and dynamics in the lead-up to volcanic eruptions and crustal growth. A common approach is to utilise minerals that have compositions sensitive to changes in pressure and/or temperature, such as clinopyroxene, which is ubiquitous in mafic to intermediate magmas. However, clinopyroxene thermobarometry may carry significant uncertainty and require an appropriate equilibrium melt composition. In addition, the degree of magma undercooling (ΔT) affects clinopyroxene composition and zoning, with common sector zoning potentially obfuscating thermobarometry results. Here, we use a set of crystallisation experiments on a primitive trachybasalt from Mt. Etna (Italy) at ΔT = 25–233 °C, P = 400–800 MPa, H2O = 0–4 wt % and fO2 = NNO + 2, with clinopyroxene crystals defined by Al-rich zones (prisms and skeletons) and Al-poor zones (hourglass and overgrowths) to assess common equilibrium models and thermobarometric approaches. Under the studied conditions, our data suggest that the commonly applied Fe–Mg exchange (cpx-meltKdFe–Mg) is insensitive to increasing ΔT and may not be a reliable indicator of equilibrium. The combined use of DiHd (CaMgSi2O6 + CaFeSi2O6) and EnFs (Mg2Si2O6 + Fe2Si2O6) models indicate the attainment of equilibrium in both Al-rich and Al-poor zones for almost all investigated ΔT. In contrast, CaTs (CaAl2SiO6) and CaTi (CaTiAl2O6) models reveal substantial deviations from equilibrium with increasing ΔT, particularly in Al-rich zones. We postulate that this reflects slower diffusion of Al and Ti in the melt compared with Ca and Mg and recommend the concurrent application of these four models to evaluate equilibrium between clinopyroxene and melt, particularly for sector-zoned crystals. Thermobarometers calibrated with only isothermal–isobaric experiments closely reproduce experimental P–T at low ΔT, equivalent to natural phenocrysts cores and sector-zoned mantles. Models that also consider decompression experiments are most accurate at high ΔT and are therefore suitable for outermost phenocryst rims and groundmass microlites. Recent machine learning approaches reproduce P–T conditions across all ΔT conditions. Applying our experimental constraints to sector-zoned microphenocrysts and groundmass microlites erupted during the 1974 eccentric eruption at Mt. Etna, we highlight that both hourglass and prism sectors are suitable for thermobarometry, given that equilibrium is sufficiently tested for. The combination of DiHd, EnFs, CaTs and CaTi models identifies compositions closest to equilibrium with the bulk melt composition, and results in smaller differences in P–T calculated for hourglass and prism sectors compared with applying only DiHd and EnFs equilibrium models. This provides a framework to assess crystallisation conditions recorded by sector-zoned clinopyroxene crystals in mafic alkaline settings.
    Description: Published
    Description: egad074
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Experimental Petrology ; Petrology ; Clinopyroxene ; Thermobarometry ; Experimental Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-13
    Description: We aim to compute macroseismic parameters (location and magnitude) using the BOXER code for the first time on the citizen testimonies, that is, individual intensity data points (IDPs) at the global scale collected and made available by the LastQuake system of the European–Mediterranean Seismological Centre (EMSC). IDPs available for different earthquakes are selected to eliminate those that are geographically inconsistent with most data; then they are clustered spatially based on various methods. For each cluster with at least three IDPs, a macroseismic data point (MDP), corresponding to an intensity value assessed for given localities as in classical macroseismic studies, is computed by various central tendency estimators (average, median, and trimmed averages). Finally, macroseismic parameters are obtained by MDP distribution using two location methods of BOXER code. For each earthquake, we used raw and corrected intensities and 132 different combinations of grouping methods, estimators, and BOXER methods. We assigned a ranking to the combinations that best reproduce instrumental parameters and used such a ranking to select preferred combinations for each earthquake. We analyzed retrospectively the reliability of the parameters as a function of time and space. The results are essentially identical using original and corrected intensities and show higher reliability for BOXER’s method 1 than for method 0; they are dependent on the geographical area, and generally improve over time and with the number of IDPs collected. These findings are useful for the future real-time analyses, and for evaluating the location and magnitude of earthquakes whenever a sufficient number of IDPs are available and with a distribution such that MDPs can be derived and the BOXER method applied.
    Description: Published
    Description: 969–996
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-13
    Description: Underdetermination is a condition affecting all problems in seismic imaging. It manifests mainly in the nonuniqueness of the models inferred from the data. This condition is exacerbated if simplifying hypotheses like isotropy are discarded in favor of more realistic anisotropic models that, although supported by seismological evidence, require more free parameters. Investigating the connections between underdetermination and anisotropy requires the implementation of solvers which explore the whole family of possibilities behind nonuniqueness and allow for more informed conclusions about the interpretation of the seismic models. Because these aspects cannot be investigated using traditional iterative linearized inversion schemes with regularization constraints that collapse the infinite possible models into a unique solution, we explore the application of transdimensional Bayesian Monte Carlo sampling to address the consequences of underdetermination in anisotropic seismic imaging. We show how teleseismic waves of P and S phases can constrain upper‐mantle anisotropy and the amount of additional information these data provide in terms of uncertainty and trade‐offs among multiple fields.
    Description: Published
    Description: 1214–1226
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-13
    Description: The Algerian offshore earthquake of 18 March 2021, Mw 6.0, was felt by people in various Italian regions, also at large epicentral distance. This unusual human perception far from the source prompted us to analyze the waveforms recorded by land seismic stations installed along the Iberian, French, and Italian coasts. On some seismograms of the selected network, prominent T phases are detected. T waves can travel in the SOund Fixing And Ranging (SOFAR) channel over great distances (thousands of kilometers) with little loss in signal strength and be recorded by near‐coastal seismometers after the P (primary) and S (secondary) phases (hence T or tertiary phases). To explain the subjective perception of ground shaking with quantities that are measured on the seismogram, we estimated the empirical macroseismic intensities for both body and T phases and we calculated the body‐wave seismic attenuation. The P‐wave anelastic attenuation analysis shows two main wave propagation patterns that reflect lithosphere heterogeneity of the Algerian, Liguro‐Provençal, and Tyrrhenian basins. We find that in some cases, in particular along the Italian and French coasts, the largest ground shaking is caused by the T phase. Our observations confirm that the central‐western Mediterranean Sea is a favorable site for T‐wave propagation and suggest that the T phases should be taken into account in ground‐shaking hazard assessment for the central‐western Mediterranean.
    Description: Published
    Description: 859–869
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-13
    Description: Werecomputethecoefficients of the intensity prediction equation (IPE) in Italy using the data of the DBMI15 version 2.0 (v.2.0) intensity database and the instrumental and combined (instrumental plus macroseismic) magnitudes reported by the CPTI15 v.2.0 catalog. Wefollow the same procedure described in the previous article, consisting of a first step in which the attenuation of intensity I with respect to the distance D from macroseismic hypocenter is referred to the expected intensity at the epicenter IE and a second step in which IE is related to the instrumental magnitude Mi, the combined magnitude Mc,the epicentral intensity I0, and the maximum intensity Imax using error-in-variable (EIV) regression methods. The main methodological difference with respect to the original article concerns the estimation of the uncertainty of IE to be used for EIV regressions, which is empirically derived from the standard deviation of regression between IE and Mi and also used for the regressions of IE with Mc, I0,andImax. In summary, the new IPE determined from DBMI15 v.2.0 is I IE−0:0081D−h−1:072 lnD−lnh , in which D p R2 h2 , h = 4.49 km, and IE can be calculated from the intensity data distribution of the earthquake. If the intensity data distribution is not available, IE can be calculated from the following relationships IE −2:578 1:867Mw,IE I0.
    Description: In press
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-13
    Description: We analyze the interplay between hydrology, deformation and seismicity in the Matese massif, located in the Italian Southern Apennines. We find that this area is characterized by the concurrent action of two hydrologically-driven processes: the first is the deformation detected by GNSS data in the shallowest part (above the elevation of the major springs) of the Earth crust, in phase with the hydrological forcing; the second is the triggering of seismicity at depth with a delay suggesting a downward diffusive process. We study the first process by applying a Principal Component Analysis to the GNSS displacements time series, aiming to identify a common signal describing the largest data variance. We find that the maximum horizontal displacements associated with the first principal component (PC1) are larger than 1 cm in two GNSS sites and the PC1 temporal evolution is well correlated and in phase with the flow of the largest spring of the region, which we consider as proxy of the water content of the massif. This suggests that the main source of horizontal deformation is the water content fluctuations in the shallow portion of the Matese aquifer, in particular within fractures located in correspondence of the main mapped faults. The deformation rates caused by this process are one order of magnitude larger than the tectonic ones. Finally, we infer the second process by observing the correlation between the background seismicity and the spring discharge with a time lag of 121 days. In our interpretation, downward diffusive processes, driven by aquifer water content variations, propagate pore pressure waves that affect the faults strength favoring the occurrence of micro-earthquakes. This is supported by the values of hydraulic diffusivity (1.5 m^2/s) and rock permeability (3.2-3.8⋅10^−13 m^2), which are compatible with what is observed in karstified limestones.
    Description: Published
    Description: 1899–1912
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-29
    Description: The Båth’s law is an empirical seismological relation between the magnitudes of the mainshock and the largest aftershock of a seismic sequence. This empirical law, differently from other seismological laws, could be valid only when the seismic sequence is ended. Indeed, during the sequence, we don’t know if the strongest event has already happened or not, and then inferring something about the magnitude of the largest aftershock is hazardous. In this opinion paper, we discuss some issues related to the Båth’s law: its validity on a global catalog, the use of the terms “mainshock” and “aftershock” in the seismological community and in the public, and their implications in earthquake forecasting communications. We show the uselessness of Båth’s law in earthquake forecasting, and that the words “mainshock” and “aftershock” have different interpretations for the public and for seismologists. We argue that their use during an ongoing seismic sequence, without a proper explanation of their meaning, could be confounding, in particular for the Italian language. Calling all events just “earthquakes” could be a simple but effective solution.
    Description: Published
    Description: 2565–2568
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-27
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: We report on about 20 yr of relative gravity measurements, acquired on Mt. Somma–Vesuvius volcano in order to investigate the hydrological and volcano-tectonic processes controlling the present-day activity of the volcano. The retrieved long-term field of time gravity change (2003–2022) shows a pattern essentially related to the subsidence, which have affected the central part of the volcano, as detected by the permanent GNSS network and InSAR data. After reducing the observations for the effect of vertical deformation, no significant residuals are found, indicating no significant mass accumulation or loss within the volcanic system. In the north-western sector of the study area, at the border of the volcano edifice, however, significant residual positive gravity changes are detected which are associated to ground-water rebound after years of intense exploitation of the aquifers. On the seasonal timescale, we find that stations within the caldera rim are affected by the seasonal hydrological effects, while the gravity stations at the base of the Vesuvius show a less clear correlation. Furthermore, within the caldera rim a multiyear gravity transient is detected with an increase phase lasting about 4 yr followed by a slower decrease phase. Analysis of rain data seem to exclude a hydrological origin, hence, we hypothesize a deeper source related to the geothermal activity, which can be present even if the volcano is in a quiescent state. We infer the depth and volume of the source by inverting the spatial pattern of the gravity field at the peak of the transient. A volume of fluids of 9.5 × 107 m3 with density of 1000 kg m−3 at 2.3 km depth is capable to fit reasonably well the observations. To explain the gravity transient, simple synthetic models are produced, that simulate the ascent of fluids from a deep reservoir up to the depth of 2.3 km and a successive diffusion within the carbonate aquifer hosting the geothermal system. The whole process appears to not significantly affect the seismicity rate and the deformation of the volcano. This study demonstrates the importance of a 4-D gravity monitoring of a volcano to understand its complex gravity signals that cover different spatial and temporal scales. Discriminating the different contributions that mix up in the observed gravity changes, in particular those due to hydrologic/anthropogenic activities form those due to the geothermal dynamics, is fundamental for a complete and reliable evaluation of the volcano state.
    Description: Published
    Description: 1565–1580
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-22
    Description: We present a new approach to estimate the predominant direction of rupture propagation during a seismic sequence. A fast estimation of the rupture propagation direction is essential to knowthe azimuthal distribution of shaking around the seismic source and the associated risks for the earthquake occurrence. The main advantage of the proposed method is that it is conceptually reliable, simple, and fast (near real time). The approach uses the empirical Green’s function technique and can be applied directly to the waveforms without requiring the deconvolution of the instrumental response and without knowing a priori the attenuation model and the orientation of the activated fault system. We apply the method to the 2016–2017 Amatrice-Visso-Norcia high-energy and long-lasting earthquake series in central Italy,which affected a large area up to 80 kmalong strike, withmore than 130,000 events of small-to-moderate magnitude recorded until the end of August 2022. Most of the selected events analyzed in this study have a magnitude greater than 4.4 and only four seismic events have a magnitude in the range of 3.3–3.7. Our results show that the complex activated normal fault system has a rupture direction mainly controlled by the pre-existing normal faults and by the orientation of the reactivated faults. In addition, the preferred direction of rupture propagation is also controlled by the presence of fluid in the pre-existing structural discontinuities. We discuss the possible role of fluids as a cause of bimaterial interface. Another important finding from our analysis is that the spatial evolution of seismicity is controlled by the directivity.
    Description: Published
    Description: 1912–1924
    Description: JCR Journal
    Keywords: directivity ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-22
    Description: We investigate the variability of Brune stress drop (Δσ), apparent stress (τa), and Savage– Wood radiation efficiency (ηsw   τa= Δσ), in the 2013–2014 Mw 5.0 earthquake sequence that struck the Matese area in the southern Apennines range of Italy. The sequence is clustered in a relatively small crustal volume in the 13–22 km depth range, which is greater than that of background seismicity and normal-faulting sequences that occurred under the range axis, usually located in the first 15 km of the crust.We find high Savage– Wood radiation efficiency values for most of the analyzed earthquakes located in a narrow crustal volume, with values ranging from well above the self-similarity value to very high values as high as 0.55. In addition, a large variability in radiation efficiency (up to 90%) is observed for two similar magnitude events at different depths. Previous studies reported seismic evidence of fluid involvement in the nucleation process of the Matese earthquakes. By integrating our results with crustal geophysical data published recently, we propose that most of the earthquakes characterized by high values of ηsw are nucleated within high pore pressure zones located in the crystalline midcrust of Adria. We reckon that high pore pressure fluids of deep origin played a role in the rupture process and were responsible for themixed shear-tensile sources inferred from the analysis of the S-wave/P-wave spectral amplitude ratio for most of 2013–2014 earthquakes.
    Description: Published
    Description: 299–319
    Description: JCR Journal
    Keywords: stress drop ; apparent stress ; radiation efficiency
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...