ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-20
    Description: In seismically active regions with variable dominant focal mechanisms, there is considerable tsunami inundation height uncertainty. Basic earthquake source parameters such as dip, strike, and rake affect significantly the tsunamigenic potential and the tsunami directivity. Tsunami inundation is also sensitive to other properties such as bottom friction. Despite their importance, sensitivity to these basic parameters is surprisingly sparsely studied in literature. We perform suites of systematic parameter searches to investigate the sensitivity of inundation at the towns of Catania and Siracusa on Sicily to changes both in the earthquake source parameters and the Manning friction. The inundation is modelled using the Tsunami-HySEA shallow water code on a system of nested topo-bathymetric grids with a finest spatial resolution of 10 m. This GPU-based model, with significant HPC resources, allows us to perform large numbers of high- resolution tsunami simulations. We analyze the variability of different hydrodynamic parameters due to large earthquakes with uniform slip at different locations, focal depth, and different source parameters. We consider sources both near the coastline, in which significant near-shore co-seismic deformation occurs, and offshore, where near- shore co-seismic deformation is negligible. For distant offshore earthquake sources, we see systematic and intuitive changes in the inundation with changes in strike, dip, rake, and depth. For near-shore sources, the dependency is far more complicated and co- determined by both the source mechanisms and the coastal morphology. The sensitivity studies provide directions on how to resolve the source discretization to optimize the number of sources in Probabilistic Tsunami Hazard Analysis, and they demonstrate a need for a far finer discretization of local sources than for more distant sources. For a small number of earthquake sources, we study systematically the inundation as a function of the Manning coefficient. The sensitivity of the inundation to this parameter varies greatly for different earthquake sources and topo-bathymetry at the coastline of interest. The friction greatly affects the velocities and momentum flux and to a lesser but still significant extent the inundation distance from the coastline. An understanding of all these dependencies is needed to better quantify the hazard when source complexity increases.
    Description: Published
    Description: 757618
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 3IT. Calcolo scientifico
    Description: JCR Journal
    Keywords: tsunami ; inundation ; HPC ; earthquakes ; numerical simulations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-04-04
    Description: With the aim of deepening our understanding of deep-seated fluids upwelling and mixing in large regional aquifers, we performed a hydrogeochemical study of twenty-two springs in the Contursi area (upper Sele river valley, southern Apennines) by means of the measurements of chemical-physical parameters, major ions, trace elements, and stable and radioactive isotopes. Besides, we realized two updated geo-structural cross-sections inorder to reconstruct the groundwater flowpath in the study area. The hydrogeochemical composition, as well a the water temperature allow to identify-three main groups of groundwater: Cold and Low salinity Groundwater (CLGW), Intermediate Salinity Groundwater (ISGW), and Thermal Salinity Groundwater (TSGW). The CLGW group, mostly emerging at the boundary of carbonate aquifers, is characterized by alkaline earth-bicarbonate hydrofacies. Instead, ISGW and TSGW, situated in the inner zone of the valley, show gradually a hydrogeochemical evolution towards sodium-chloride type hydrofacies domain with the highest salinity value. Stable isotope (δ18O-δD) of CLGW reveal the local meteoric origin of groundwater, while isotopic signatures of ISGW and TSGW is associated with the deep fluids inflow. CLGW hydrogeochemistry is clearly related to dissolution of carbonate rocks. On the other hand, for ISGW and TSGW an additional contribution from evaporitic rocks is supported by saturation indices values (gypsum and anhydrite) and validated by isotopic signature of dissolved sulphate (δ34S-δ18O). The application of two models based on tritium data (i.e., the piston-flow and well-mixed reservoir) attributes longer and deeper groundwater flowpaths to TSGW. Through geothermometric calculations (e,g., K-Mg and SiO2-quartz), the equilibrium temperature of deep fluids reservoir is also extrapolated (i.e., 75–96 ◦C). The results of the adopted hydrogeochemical multi-component approach allowed us to propose an interpretative model of groundwater flowpath for the Contursi area, where deep-seated tectonic discontinuities play a significant role for the upwelling of saline deep thermal fluids in shallow aquifers.
    Description: Published
    Description: 129258
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: fluids ; earthquakes ; crust ; geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-07
    Description: South Matese, Apennines, is a hydrothermally and seismically active extensional area characterized by CO2outgassing and Mw≤7.1 earthquakes. There, meters-sized pockets of incohesive pulverized dolostone are hosted within Mesozoic carbonates at the hanging wall of seismically active normal faults. The aim of this paper is to understand the pulverization process. The pulverized dolostone is finely comminuted (down to a few microns), but primary structures, mainly bedding, are preserved. The grain size distribution is similar to that of previously studied pulverized rocks associated with active faults and dissimilar to that of carbonate cataclasites and fault gouges. The pulverized pockets are surrounded by zones (halos), in which the loose grains are cemented, in their original position, by microcrystalline calcite, resulting in a cemented micro-mosaic breccia. Stable isotopes from the cement are compatible with calcite precipitation from rapidly CO2-degassing shallow waters. Comparing our observations with results of laboratory experiments on carbonate pulverization through rapid decompression of pore-hosted CO2, the best explanation for the pulverized dolostone may lie on local accumulations of pressurized CO2-rich gas, suddenly decompressed during earthquakes. The limited permeability of the gas-saturated dolostone must have prevented a prompt escape of the gas from the rock, which was therefore anhydrously pulverized by the rapid expansion of the trapped gas. The sudden decompression must have suctioned bicarbonate-rich groundwaters, from which microcrystalline calcite rapidly precipitated, fossilizing the freshly pulverized dolostone. Calcite precipitation formed an impermeable shield around the pulverized pockets, which, therefore, remained internally uncemented. This process may have occurred over multiple cycles at depths shallower than the CO2subcritical–supercritical boundary (ca. -800m). Although hypothetical, the proposed mechanism is for the first time suggested for an active tectonic environment. The gas rapid decompression could have been triggered by coseismic processes (e.g., dynamic unloading or transient tensile pulses) previously proposed for the formation of other pulverized rocks. The presented case may improve our knowledge of possible chemical-physical processes connected with the subsurface storage of CO2in seismically active areas.
    Description: Published
    Description: 117996
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: CO2 ; earthquakes ; pulverization ; carbonatic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-22
    Description: The Tibetan Plateau is growing by both vertical uplift and horizontal extension. It is a continuing debate how the Tibetan Plateau interacts with its surrounding plates and blocks. Due to intense tectonic activity, which produced catastrophic earthquakes, the tectonic zone between the northeast margin of the horizontal extending Tibetan Plateau and the stable Ordos Block has garnered considerable interest. This study investigated the spatial distribution of gas geochemical anomalies (e.g., high flux of CO2 in correspondence of the main faults) at regional scale together with the seismic tomography in correspondence of this tectonic zone with the aim to figure out the domain of convergent boundary between the Ordos block and Tibetan plateau, and trace the tectonic discontinuities which are able to transfer fluids through the crustal layers between the two main geological units. From northwest to southeast, obvious difference of spatial distributions of geochemical and geophysical features in the tectonic zone between the northeast margin of the Tibetan Plateau and the Ordos Block is inferred. The northeast area (Zone A) is dominated by thrust and strike-slip faults with clear velocity boundary underneath, where low crack density (ε), saturation rate (ξ) and Poisson’ ratio (σ) in the middle-lower crust coincided with the low values of heat flow and CO2 emissions, tectonic compression and regional locked-fault can be inducements. The southeast area (Zone C) is dominated by extensional tectonics with roughly E-W fast-velocity direction (FVD) of P-wave azimuthal anisotropy, where high permeability and porosity can be deduced from crustal high ε, ξ and relatively high σ anomalies, resulting in high heat flow, CO2 concentrations and fluxes at the surface, and predominantly crustal-derived gases. The intermediate area (Zone B) also dominated by thrust and strike-slip faults is an extraordinary zone, where intensely locked-fault were clearly revealed, while the predominant anisotropic FVDs in the middle crust changed obviously, more contribution of shallow gas component was detected, and CO2 flux, heat flow, and regional ε, ξ, and σ in the upper crust were higher, compared with those in Zone A, which indicated the regional crushing fragmentation underneath Zone B. The adopted multidisciplinary approach demonstrated that Zone B is the convergent boundary between the Tibetan Plateau and the Ordos Block.
    Description: Published
    Description: 121386
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Keywords: fluids ; earthquakes ; helium ; Tibetan plateau
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...