ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (22,183)
  • 2020-2024  (8,224)
  • 1960-1964  (13,959)
Collection
Language
Years
Year
  • 1
    Publication Date: 2024-07-11
    Description: Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods—measurement, monitoring, reporting, and verification—that are essential to demonstrate the safe removal and long-term storage of CO 2 . Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-11
    Description: Perturbations in stratospheric aerosol due to explosive volcanic eruptions are a primary contributor to natural climate variability. Observations of stratospheric aerosol are available for the past decades, and information from ice cores has been used to derive estimates of stratospheric sulfur injections and aerosol optical depth over the Holocene (approximately 10 000 BP to present) and into the last glacial period, extending back to 60 000 BP. Tephra records of past volcanism, compared to ice cores, are less complete but extend much further into the past. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present here an ensemble reconstruction of volcanic stratospheric sulfur injection (VSSI) over the last 140 000 years that is based primarily on terrestrial and marine tephra records. VSSI values are computed as a simple function of eruption magnitude based on VSSI estimates from ice cores and satellite observations for identified eruptions. To correct for the incompleteness of the tephra record, we include stochastically generated synthetic eruptions assuming a constant background eruption frequency from the ice core Holocene record. While the reconstruction often differs from ice core estimates for specific eruptions due to uncertainties in the data used and reconstruction method, it shows good agreement with an ice-core-based VSSI reconstruction in terms of millennial-scale cumulative VSSI variations over the Holocene. The PalVol reconstruction provides a new basis to test the contributions of forced vs. unforced natural variability to the spectrum of climate and the mechanisms leading to abrupt transitions in the palaeoclimate record with low- to high-complexity climate models. The PalVol volcanic forcing reconstruction is available at https://doi.org/10.26050/WDCC/PalVolv1 (Toohey and Schindlbeck-Belo, 2023).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-11
    Description: We report two Arctic species of incirrate octopods new to science. One is formally described here as Muusoctopus aegir Golikov, Gudmundsson & Sabirov sp. nov. while the other, Muusoctopus sp. 1, is not formally described due to a limited number of samples (all are immature individuals). These two species differ from each other, and from other Muusoctopus, especially in: 1) absence of stylets (in M. aegir sp. nov.); 2) proportions of mantle and head; 3) funnel organ morphology (W-shaped with medial and marginal limbs of equal length in M. aegir sp. nov., or medial are slightly longer; V V-shaped with medial limbs slightly longer and broader than marginal in Muusoctopus sp. 1); 4) sucker and gill lamellae counts; 5) relative arm length and sucker diameter; and 6) male reproductive system relative size and morphology. Species of Muusoctopus now comprise four of 12 known Arctic cephalopods. Additionally, this study provides: a) new data on the morphology and reproductive biology of M. johnsonianus and M. sibiricus, and a diagnosis of M. sibiricus; b) the equations to estimate mantle length and body mass from beak measurements of M. aegir sp. nov. and M. johnsonianus; c) a cytochrome c oxidase subunit I gene barcode for M. sibiricus; d) new data on the ecology and distribution of all studied species; and e) a data table for the identification of northern North Atlantic and Arctic species of Muusoctopus.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-11
    Description: NORP-SORP Workshop on Polar Fresh Water: Sources, Pathways and Impacts of Freshwater in Northern and Southern Polar Oceans and Seas (SPICE-UP)What: Up to 60 participants at a time and more than twice as many registrants in total from 20 nations and across experience levels met to discuss the current status of research on freshwater in both polar regions, future directions, and synergies between the Arctic and Southern Ocean research communitiesWhen: 19-21 September 2022 Where: Online
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-07-11
    Description: Background: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. Results: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. Conclusion: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply “fine-tuning” of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host’s traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-11
    Description: The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC, 2019–2020), a year-long drift with the Arctic sea ice, has provided the scientific community with an unprecedented, multidisciplinary dataset from the Eurasian Arctic Ocean, covering high atmosphere to deep ocean across all seasons. However, the heterogeneity of data and the superposition of spatial and temporal variability, intrinsic to a drift campaign, complicate the interpretation of observations. In this study, we have compiled a quality-controlled physical hydrographic dataset with best spatio-temporal coverage and derived core parameters, including the mixed layer depth, heat fluxes over key layers, and friction velocity. We provide a comprehensive and accessible overview of the ocean conditions encountered along the MOSAiC drift, discuss their interdisciplinary implications, and compare common ocean climatologies to these new data. Our results indicate that, for the most part, ocean variability was dominated by regional rather than seasonal signals, carrying potentially strong implications for ocean biogeochemistry, ecology, sea ice, and even atmospheric conditions. Near-surface ocean properties were strongly influenced by the relative position of sampling, within or outside the river-water influenced Transpolar Drift, and seasonal warming and meltwater input. Ventilation down to the Atlantic Water layer in the Nansen Basin allowed for a stronger connectivity between subsurface heat and the sea ice and surface ocean via elevated upward heat fluxes. The Yermak Plateau and Fram Strait regions were characterized by heterogeneous water mass distributions, energetic ocean currents, and stronger lateral gradients in surface water properties in frontal regions. Together with the presented results and core parameters, we offer context for interdisciplinary research, fostering an improved understanding of the complex, coupled Arctic System.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Academic Press
    Publication Date: 2024-07-09
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-07-09
    Description: Aim Seamounts are conspicuous geological features with an important ecological role and can be considered vulnerable marine ecosystems (VMEs). Since many deep‐sea regions remain largely unexplored, investigating the occurrence of VME taxa on seamounts is challenging. Our study aimed to predict the distribution of four cold‐water coral (CWC) taxa, indicators for VMEs, in a region where occurrence data are scarce. Location Seamounts around the Cabo Verde archipelago (NW Africa). Methods We used species presence–absence data obtained from remotely operated vehicle (ROV) footage collected during two research expeditions. Terrain variables calculated using a multiscale approach from a 100‐m‐resolution bathymetry grid, as well as physical oceanographical data from the VIKING20X model, at a native resolution of 1/20°, were used as environmental predictors. Two modelling techniques (generalized additive model and random forest) were employed and single‐model predictions were combined into a final weighted‐average ensemble model. Model performance was validated using different metrics through cross‐validation. Results Terrain orientation, at broad scale, presented one of the highest relative variable contributions to the distribution models of all CWC taxa, suggesting that hydrodynamic–topographic interactions on the seamounts could benefit CWCs by maximizing food supply. However, changes at finer scales in terrain morphology and bottom salinity were important for driving differences in the distribution of specific CWCs. The ensemble model predicted the presence of VME taxa on all seamounts and consistently achieved the highest performance metrics, outperforming individual models. Nonetheless, model extrapolation and uncertainty, measured as the coefficient of variation, were high, particularly, in least surveyed areas across seamounts, highlighting the need to collect more data in future surveys. Main Conclusions Our study shows how data‐poor areas may be assessed for the likelihood of VMEs and provides important information to guide future research in Cabo Verde, which is fundamental to advise ongoing conservation planning.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-07-09
    Description: The quality of groundwater is deteriorating globally, leading to an increase in pressure on water resources, particularly in coastal regions. In the quest for mitigating water scarcity under changing climatic conditions, alternative water sources such as offshore freshened groundwater (OFG) have come into scientific focus. Estimates suggest that globally the freshwater volume within OFGs amounts to half a million cubic kilometres. This volume corresponds to more than one century’s worth of freshened water assuming present-day consumption rates. Despite the global significance of OFGs, our understanding of their spatial dimensions, volumes, and geological controls beneath the seafloor remains limited. Discoveries have largely been serendipitous, occurring during borehole drilling. Few studies have effectively integrated point-scale ground-truthing data from boreholes with regional measurements to accurately delineate the extent of OFGs. Furthermore, questions persist regarding the connectivity of OFGs to terrestrial aquifers. On this cruise, we investigated a newly-discovered OFG site within the Gulf of Corinth, Greece. We acquired electromagnetic and geochemical data to derive the spatial extent of the Gulf of Corinth OFG to understand if this low-salinity anomaly is due to present-day recharge through an onshore aquifer system or, alternatively, a remnant of past sea-level low stands.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-07-09
    Description: Anthropogenic disturbances are having strong, negative effects on aquatic systems globally, altering ecological communities and potentially creating vacant niches for both native and non-native species (NNS). Globalization and new trade routes have amplified the spread and establishment of NNS by connecting disturbed areas worldwide. In this study, we conducted a comparative assessment of seasonal variations in amphipod communities at three southeastern Baltic Sea locations – two anthropogenically impacted and one protected habitat – to determine if native and NNS diversity differed among these habitats. Our study revealed nine amphipod species - of which two were NNS - across all three habitats. The impacted habitats had significantly higher native species richness and lower NNS abundance. Grandidierella japonica was the only NNS found at the impacted habitas. In the case of the protected habitat, NNS Gammarus tigrinus was dominant for most of the year. In autumn, dominance shifted in favour of the native Gammarus locusta and Microdeutopus cf. gryllotalpa. Grandidierella japonica was not detected there. Although anthropogenically impacted habitats may be under higher invasion risk, other environmental factors, such as salinity and temperature, may be driving the establishment pattern of NNS and the resulting community structures. Furthermore, undisturbed and/or protected habitats may be highly vulnerable to invasions due to more tolerable environmental conditions, robust NNS populations and naïve native species to newcomers. Seasonality is an important aspect of ecological studies and must be taken into account, as omissions could potentially distort our understanding of the dynamics of ecosystems and prevent the detection of NNS.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...