ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-22
    Description: Quantifying the abundances of fungi is key to understanding natural variation in mycorrhi-zal communities in relation to plant ecophysiology and environmental heterogeneity. High-throughput metabarcoding approaches have transformed our ability to characterize and com-pare complex mycorrhizal communities. However, it remains unclear how well metabarcodingread counts correlate with actual read abundances in the sample, potentially limiting their useas a proxy for species abundances. Here, we use droplet digital PCR (ddPCR) to evaluate the reliability of ITS2 metabarcodingdata for quantitative assessments of mycorrhizal communities in the orchid speciesNeottiaovatasampled at multiple sites. We performed specific ddPCR assays for eight families oforchid mycorrhizal fungi and compared the results with read counts obtained from metabar-coding. Our results demonstrate a significant correlation between DNA copy numbers measured byddPCR assays and metabarcoding read counts of major mycorrhizal partners ofN. ovata,highlighting the usefulness of metabarcoding for quantifying the abundance of orchid mycor-rhizal fungi. Yet, the levels of correlation between the two methods and the numbers of falsezero values varied across fungal families, which warrants cautious evaluation of the reliabilityof low-abundance families. This study underscores the potential of metabarcoding data for more quantitative analysesof mycorrhizal communities and presents practical workflows for metabarcoding and ddPCRto achieve a more comprehensive understanding of orchid mycorrhizal communities
    Keywords: droplet digital PCR ; fungalquantification ; metabarcoding ; mycorrhizalfungi ; orchid mycorrhiza
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  Ecology and Evolution vol. 12 no. e9549 | H2020 European Institute of Innovation and Technology, Grant/Award Number: 813360; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/ Award Number: 16.161.301
    Publication Date: 2024-06-13
    Description: Monitoring community composition of Foraminifera (single-celled marine protists) pro-vides valuable insights into environmental conditions in marine ecosystems. Despitethe efficiency of environmental DNA (eDNA) and bulk-sample DNA (bulk-DNA) me-tabarcoding to assess the presence of multiple taxa, this has not been straightforwardfor Foraminifera partially due to the high genetic variability in widely used ribosomalmarkers. Here, we test the correctness in retrieving foraminiferal communities by me-tabarcoding of mock communities, bulk-DNA from coral reef sediment samples, andeDNA from their associated ethanol preservative using the recently sequenced cy-tochrome c oxidase subunit 1 (COI) marker. To assess the detection success, we com-pared our results with large benthic foraminiferal communities previously reportedfrom the same sampling sites. Results from our mock communities demonstrate thatall species were detected in two mock communities and all but one in the remainingfour. Technical replicates were highly similar in number of reads for each assigned ASVin both the mock communities and bulk-DNA samples. Bulk-DNA showed a signifi-cantly higher species richness than their associated eDNA samples, and also detectedadditional species to what was already reported at the specific sites. Our study con-firms that metabarcoding using the foraminiferal COI marker adequately retrieves thediversity and community composition of both the mock communities and the bulk-DNA samples. With its decreased variability compared with the commonly used nu-clear 18 S rRNA, the COI marker renders bulk-DNA metabarcoding a powerful tool toassess foraminiferal community composition under the condition that the referencedatabase is adequate to the target taxa.
    Keywords: bulk-sample ; DNA ; community composition ; coral reef ; environmental DNA ; foraminifera ; metabarcoding
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...