ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (132,351)
  • Oxford University Press  (24,106)
  • American Geophysical Union  (14,566)
  • Cambridge University Press  (11,208)
  • 2020-2024  (3,127)
  • 1985-1989  (179,104)
Collection
Keywords
Publisher
Language
Years
Year
  • 1
    Publication Date: 2024-07-02
    Description: The joint ESA/NASA Mass-change And Geosciences International Constellation (MAGIC) has the objective to extend time-series from previous gravity missions, including an improvement of accuracy and spatio-temporal resolution. The long-term monitoring of Earth’s gravity field carries information on mass change induced by water cycle, climate change and mass transport processes between atmosphere, cryosphere, oceans and solid Earth. MAGIC will be composed of two satellite pairs flying in different orbit planes. The NASA/DLR-led first pair (P1) is expected to be in a near-polar orbit around 500 km of altitude; while the second ESA-led pair (P2) is expected to be in an inclined orbit of 65°–70° at approximately 400 km altitude. The ESA-led pair P2 Next Generation Gravity Mission shall be launched after P1 in a staggered manner to form the MAGIC constellation. The addition of an inclined pair shall lead to reduction of temporal aliasing effects and consequently of reliance on de-aliasing models and post-processing. The main novelty of the MAGIC constellation is the delivery of mass-change products at higher spatial resolution, temporal (i.e. subweekly) resolution, shorter latency and higher accuracy than the Gravity Recovery and Climate Experiment (GRACE) and Gravity Recovery and Climate Experiment Follow-On (GRACE-FO). This will pave the way to new science applications and operational services. In this paper, an overview of various fields of science and service applications for hydrology, cryosphere, oceanography, solid Earth, climate change and geodesy is provided. These thematic fields and newly enabled applications and services were analysed in the frame of the initial ESA Science Support activities for MAGIC. The analyses of MAGIC scenarios for different application areas in the field of geosciences confirmed that the double-pair configuration will significantly enlarge the number of observable mass-change phenomena by resolving smaller spatial scales with an uncertainty that satisfies evolved user requirements expressed by international bodies such as IUGG. The required uncertainty levels of dedicated thematic fields met by MAGIC unfiltered Level-2 products will benefit hydrological applications by recovering more than 90 per cent of the major river basins worldwide at 260 km spatial resolution, cryosphere applications by enabling mass change signal separation in the interior of Greenland from those in the coastal zones and by resolving small-scale mass variability in challenging regions such as the Antarctic Peninsula, oceanography applications by monitoring meridional overturning circulation changes on timescales of years and decades, climate applications by detecting amplitude and phase changes of Terrestrial Water Storage after 30 yr in 64 and 56 per cent of the global land areas and solid Earth applications by lowering the Earthquake detection threshold from magnitude 8.8 to magnitude 7.4 with spatial resolution increased to 333 km.
    Description: Published
    Description: 1288–1308
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-27
    Description: Non-technical summary Scenarios compatible with the Paris agreement's temperature goal of 1.5 °C involve carbon dioxide removal measures - measures that actively remove CO2 from the atmosphere - on a massive scale. Such large-scale implementations raise significant ethical problems. Van Vuuren et al. (2018), as well as the current IPCC scenarios, show that reduction in energy and or food demand could reduce the need for such activities. There is some reluctance to discuss such societal changes. However, we argue that policy measures enabling societal changes are not necessarily ethically problematic. Therefore, they should be discussed alongside techno-optimistic approaches in any kind of discussions about how to respond to climate change. Technical summary The 1.5 °C goal has given impetus to carbon dioxide removal (CDR) measures, such as bioenergy combined with carbon capture and storage, or afforestation. However, land-based CDR options compete with food production and biodiversity protection. Van Vuuren et al. (2018) looked at alternative pathways including lifestyle changes, low-population projections, or non-CO2 greenhouse gas mitigation, to reach the 1.5 °C temperature objective. Underlined by the recently published IPCC AR6 WGIII report, they show that demand-side management measures are likely to reduce the need for CDR. Yet, policy measures entailed in these scenarios could be associated with ethical problems themselves. In this paper, we therefore investigate ethical implications of four alternative pathways as proposed by Van Vuuren et al. (2018). We find that emission reduction options such as lifestyle changes and reducing population, which are typically perceived as ethically problematic, might be less so on further inspection. In contrast, options associated with less societal transformation and more techno-optimistic approaches turn out to be in need of further scrutiny. The vast majority of emission reduction options considered are not intrinsically ethically problematic; rather everything rests on the precise implementation. Explicitly addressing ethical considerations when developing, advancing, and using integrated assessment scenarios could reignite debates about previously overlooked topics and thereby support necessary societal discourse. Social media summary Policy measures enabling societal changes are not necessarily as ethically problematic as commonly presumed and reduce the need for large-scale CDR
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-24
    Description: Several species from various zooplankton taxa perform seasonal vertical migrations (SVM) of typically several hundred meters between the surface layer and overwintering depths, particularly in high-latitude regions. We use OPtimality-based PLAnkton (OPPLA) ecosystem model) to simulate SVM behavior in zooplankton in the Labrador Sea. Zooplankton in OPPLA is a generic functional group without life cycle, which facilitates analyzing SVM evolutionary stability and interactions between SVM and the plankton ecosystem. A sensitivity analysis of SVM-related parameters reveals that SVM can amplify the seasonal variations of phytoplankton and zooplankton and enhance the reduction of summer surface nutrient concentrations. SVM is often explained as a strategy to reduce exposure to visual predators during winter. We find that species doing SVM can persist and even dominate the summer-time zooplankton community, even in the presence of Stayers, which have the same traits as the migrators, but do not perform SVM. The advantage of SVM depends strongly on the timing of the seasonal migrations, particularly the day of ascent. The presence of higher (visual) predators tends to suppress the Stayers in our simulations, whereas the SVM strategy can persist in the presence of non-migrating species even without higher predators.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Journal of Glaciology, Cambridge University Press, 67(261), pp. 84-90
    Publication Date: 2024-06-22
    Description: The validity of any glaciological paleo proxy used to interpret climate records is based on the level of understanding of their transfer from the atmosphere into the ice sheet and their recording in the snowpack. Large spatial noise in snow properties is observed, as the wind constantly redistributes the deposited snow at the surface routed by the local topography. To increase the signal-tonoise ratio and getting a representative estimate of snow properties with respect to the high spatial variability, a large number of snow profiles is needed. However, the classical way of obtaining profiles via snow-pits is time and energy-consuming, and thus unfavourable for large surface sampling programs. In response, we present a dual-tube technique to sample the upper metre of the snowpack at a variable depth resolution with high efficiency. The developed device is robust and avoids contact with the samples by exhibiting two tubes attached alongside each other in order to (1) contain the snow core sample and (2) to access the bottom of the sample, respectively. We demonstrate the performance of the technique through two case studies in East Antarctica where we analysed the variability of water isotopes at a 100 m and 5 km spatial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union, 36(7), ISSN: 2572-4517
    Publication Date: 2024-06-22
    Description: Marine sedimentary records are a key archive when reconstructing past climate; however, mixing at the seabed (bioturbation) can strongly influence climate records, especially when sedimentation rates are low. By commingling the climate signal from different time periods, bioturbation both smooths climate records, by damping fast climate variations, and creates noise when measurements are made on samples containing small numbers of individual proxy carriers, such as foraminifera. Bioturbation also influences radiocarbon-based age-depth models, as sample ages may not represent the true ages of the sediment layers from which they were picked. While these effects were first described several decades ago, the advent of ultra-small-sample $^{14}$C dating now allows samples containing very small numbers of foraminifera to be measured, thus enabling us to directly measure the age-heterogeneity of sediment for the first time. Here, we use radiocarbon dates measured on replicated samples of 3-30 foraminifera to estimate age-heterogeneity for five marine sediment cores with sedimentation rates ranging from 2-30 cm kyr$^{-1}$. From their age-heterogeneities and sedimentation rates we infer mixing depths of 10-20 cm for our core sites. Our results show that when accounting for age-heterogeneity, the true error of radiocarbon dating can be several times larger than the reported measurement. We present estimates of this uncertainty as a function of sedimentation rate and the number of individuals per radiocarbon date. A better understanding of this uncertainty will help us to optimise radiocarbon measurements, construct age models with appropriate uncertainties and better interpret marine paleo records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-17
    Description: Thermobarometry provides a critical means of assessing locations of magma storage and dynamics in the lead-up to volcanic eruptions and crustal growth. A common approach is to utilise minerals that have compositions sensitive to changes in pressure and/or temperature, such as clinopyroxene, which is ubiquitous in mafic to intermediate magmas. However, clinopyroxene thermobarometry may carry significant uncertainty and require an appropriate equilibrium melt composition. In addition, the degree of magma undercooling (ΔT) affects clinopyroxene composition and zoning, with common sector zoning potentially obfuscating thermobarometry results. Here, we use a set of crystallisation experiments on a primitive trachybasalt from Mt. Etna (Italy) at ΔT = 25–233 °C, P = 400–800 MPa, H2O = 0–4 wt % and fO2 = NNO + 2, with clinopyroxene crystals defined by Al-rich zones (prisms and skeletons) and Al-poor zones (hourglass and overgrowths) to assess common equilibrium models and thermobarometric approaches. Under the studied conditions, our data suggest that the commonly applied Fe–Mg exchange (cpx-meltKdFe–Mg) is insensitive to increasing ΔT and may not be a reliable indicator of equilibrium. The combined use of DiHd (CaMgSi2O6 + CaFeSi2O6) and EnFs (Mg2Si2O6 + Fe2Si2O6) models indicate the attainment of equilibrium in both Al-rich and Al-poor zones for almost all investigated ΔT. In contrast, CaTs (CaAl2SiO6) and CaTi (CaTiAl2O6) models reveal substantial deviations from equilibrium with increasing ΔT, particularly in Al-rich zones. We postulate that this reflects slower diffusion of Al and Ti in the melt compared with Ca and Mg and recommend the concurrent application of these four models to evaluate equilibrium between clinopyroxene and melt, particularly for sector-zoned crystals. Thermobarometers calibrated with only isothermal–isobaric experiments closely reproduce experimental P–T at low ΔT, equivalent to natural phenocrysts cores and sector-zoned mantles. Models that also consider decompression experiments are most accurate at high ΔT and are therefore suitable for outermost phenocryst rims and groundmass microlites. Recent machine learning approaches reproduce P–T conditions across all ΔT conditions. Applying our experimental constraints to sector-zoned microphenocrysts and groundmass microlites erupted during the 1974 eccentric eruption at Mt. Etna, we highlight that both hourglass and prism sectors are suitable for thermobarometry, given that equilibrium is sufficiently tested for. The combination of DiHd, EnFs, CaTs and CaTi models identifies compositions closest to equilibrium with the bulk melt composition, and results in smaller differences in P–T calculated for hourglass and prism sectors compared with applying only DiHd and EnFs equilibrium models. This provides a framework to assess crystallisation conditions recorded by sector-zoned clinopyroxene crystals in mafic alkaline settings.
    Description: Published
    Description: egad074
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Experimental Petrology ; Petrology ; Clinopyroxene ; Thermobarometry ; Experimental Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-13
    Description: All Rights Reserved
    Description: Predicting coastal change depends upon our knowledge of postglacial relative sea-level variability, partly controlled by glacio-isostatic responses to ice-sheet melting. Here, we reconstruct the postglacial relative sea-level changes along the Caribbean and Pacific coasts of northwestern South America by numerically solving the sea-level equation with two scenarios of mantle viscosity: global standard average and high viscosity. Our results with the standard model (applicable to the Pacific coast) agree with earlier studies by indicating a mid-Northgrippian high stand of ~2 m. The high-viscosity simulation (relevant to the Caribbean coast) shows that the transition from far- to intermediate-field influence of the Laurentide Ice Sheet occurs between Manzanillo del Mar and the Gulf of Morrosquillo. South of this location, the Colombian Caribbean coast has exhibited a still stand with a nearly constant Holocene relative sea level. By analyzing our simulations considering sea-level indicators, we argue that tectonics is more prominent than previously assumed, especially along the Caribbean coast. This influence prevents a simplified view of regional relative sea-level changes on the northwestern South American coast.
    Description: Published
    Description: 28-43
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-13
    Description: Neomphaloidean gastropods are endemic to chemosynthesis-based ecosystems ranging from hot vents to organic falls, and their diversity and evolutionary history remain poorly understood. In the southwestern Pacific, deep-sea hydrothermal vents on back-arc basins and volcanic arcs are found in three geographically secluded regions: a western region around Manus Basin, an eastern region around North Fiji and Lau Basins, and the intermediate Woodlark Basin where active venting was confirmed only recently, on the 2019 R/V L’Atalante CHUBACARC expedition. Although various lineages of neomphaloidean snails have been detected, typically restricted to one of the three regions, some of these have remained without names. Here, we use integrative taxonomy to describe three of these species: the neomphalid Symmetromphalus mithril sp. nov. from Woodlark Basin and the peltospirids Symmetriapelta becki sp. nov. from the eastern region and Symmetriapelta radiata sp. nov. from Woodlark Basin. A combination of shell sculpture and radular characters allow the morphological separation of these new species from their described congeners. A molecular phylogeny reconstructed from 570 bp of the mitochondrial cytochrome c oxidase subunit I gene confirmed the placement of the three new species in their respective genera and the superfamily Neomphaloidea. The finding of these new gastropods, particularly the ones from the Woodlark Basin, provides insights and implications on the historical role of Woodlark as a dispersing centre, in addition to highlighting the uniqueness of the Woodlark faunal community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-29
    Description: We developed a high-resolution magnetochronology of the Pleistocene stratigraphy of the Monte Netto hillock, a tectonically uplifted struc ture in the Po Plain of northern Italy. Our data allowed reconstructing the depositional age of the sequence and assessing rates of defor mation and rock uplift of the neotectonic structure, thus providing constraints on the tectono-sedimentary evolution of this seismically active part of the buried Southern Alps. Using a combination of magnetostratigraphy and paleosecular variation analysis, we generated an age-depth model for the Monte Netto stratigraphy that encompasses, from the top, Upper Pleistocene (11–72 ka) loess-paleosols over laying fluvial sediments spanning the Brunhes-Matuyama boundary (773 ka) and the top of the Jaramillo (990 ka). The identification of the same magneto-chronostratigraphic surfaces in nearby drill cores from regions of the Po Plain that have not been affected by neotectonic deformation allowed estimating a mean rate of tectonic uplift of the hillock relative to the neighboring plain of 11.3 ± 1.5 cm/ka, and an absolute uplift relative to sea level of ∼19.3 cm/ka. Finally, our paleomagnetic analyses from the uppermost loess sequence disclosed the complexity of the tectonic evolution of the Monte Netto structure, which shows evidence of a two-phase rotational deformation linked to coseismic surface faulting due to recent seismic activity.
    Description: Published
    Description: 191-205
    Description: JCR Journal
    Keywords: Magnetochronology ; Pleistocene ; Paleosecular variations ; Loess-paleosols ; Neotectonic deformation ; Po Plain
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-27
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: We report on about 20 yr of relative gravity measurements, acquired on Mt. Somma–Vesuvius volcano in order to investigate the hydrological and volcano-tectonic processes controlling the present-day activity of the volcano. The retrieved long-term field of time gravity change (2003–2022) shows a pattern essentially related to the subsidence, which have affected the central part of the volcano, as detected by the permanent GNSS network and InSAR data. After reducing the observations for the effect of vertical deformation, no significant residuals are found, indicating no significant mass accumulation or loss within the volcanic system. In the north-western sector of the study area, at the border of the volcano edifice, however, significant residual positive gravity changes are detected which are associated to ground-water rebound after years of intense exploitation of the aquifers. On the seasonal timescale, we find that stations within the caldera rim are affected by the seasonal hydrological effects, while the gravity stations at the base of the Vesuvius show a less clear correlation. Furthermore, within the caldera rim a multiyear gravity transient is detected with an increase phase lasting about 4 yr followed by a slower decrease phase. Analysis of rain data seem to exclude a hydrological origin, hence, we hypothesize a deeper source related to the geothermal activity, which can be present even if the volcano is in a quiescent state. We infer the depth and volume of the source by inverting the spatial pattern of the gravity field at the peak of the transient. A volume of fluids of 9.5 × 107 m3 with density of 1000 kg m−3 at 2.3 km depth is capable to fit reasonably well the observations. To explain the gravity transient, simple synthetic models are produced, that simulate the ascent of fluids from a deep reservoir up to the depth of 2.3 km and a successive diffusion within the carbonate aquifer hosting the geothermal system. The whole process appears to not significantly affect the seismicity rate and the deformation of the volcano. This study demonstrates the importance of a 4-D gravity monitoring of a volcano to understand its complex gravity signals that cover different spatial and temporal scales. Discriminating the different contributions that mix up in the observed gravity changes, in particular those due to hydrologic/anthropogenic activities form those due to the geothermal dynamics, is fundamental for a complete and reliable evaluation of the volcano state.
    Description: Published
    Description: 1565–1580
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...