ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Earthquake interaction, forecasting and prediction  (1)
  • Experimental Petrology  (1)
  • Fractures  (1)
  • Oxford University Press  (3)
  • Blackwell Publishing Ltd
  • 2020-2024  (3)
  • 1985-1989
  • 1965-1969
Collection
  • Articles  (3)
Publisher
Years
  • 2020-2024  (3)
  • 1985-1989
  • 1965-1969
Year
  • 1
    Publication Date: 2023-12-27
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: The south-eastern sector of the Mount Etna, Italy, is characterized by numerous active faults, in particular the Belpasso–Ognina lineament, the Tremestieri–San Gregorio–Acitrezza fault, the Trecastagni fault and the Fiandaca–Nizzeti fault including the Timpe Fault System. Their activity is the result of both volcanism and tectonics. Here, we analyse the ground deformation occurred from 2016 to 2019 across those active faults by using the GNSS data acquired at 22 permanent stations and 35 campaign points observed by the Etna Observatory (INGV) and by the University of Catania. We also use the time-series of line of sight displacement of permanent scatterers SENTINEL-1 A-DInSAR obtained by using the P-SBAS tool of the ESA GEP-TEP (Geohazards Thematic Exploitation Platform) service. We discriminate the contributions of the regional tectonic strain, the inflations, the deflations of the volcano and the gravitational sliding in order to analyse the deformation along the faults of the south-eastern flank of Etna. The shallow and destructive Mw = 4.9 earthquake of 2018 December 26 occurred within the studied area two days after a dyke intrusion, that propagated beneath the centre of the volcano accompanied by a short eruption. Both GNSS and InSAR time-series document well those events and allow to investigate the post-seismic sliding across the faults of south-eastern flank. We analyse the slow slip events (SSE) that are observed in the GNSS and InSAR time-series in the vicinity of the Acitrezza fault. We quantify and discuss the tectonic origin of the Belpasso–Ognina lineament that we interpreted as a tear fault.
    Description: Published
    Description: 664–682
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Keywords: Satellite geodesy ; Transient deformation ; Interferometry ; Fractures ; fault ; Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: In a recent work, we applied the every earthquake a precursor according to scale (EEPAS) probabilistic model to the pseudo-prospective forecasting of shallow earthquakes with magni- tude M 5.0 in the Italian region. We compared the forecasting performance of EEPAS with that of the epidemic type aftershock sequences (ETAS) forecasting model, using the most recent consistency tests developed within the collaboratory for the study of earthquake predictabil- ity (CSEP). The application of such models for the forecasting of Italian target earthquakes seems to show peculiar characteristics for each of them. In particular, the ETAS model showed higher performance for short-term forecasting, in contrast, the EEPAS model showed higher forecasting performance for the medium/long-term. In this work, we compare the performance of EEPAS and ETAS models with that obtained by a deterministic model based on the occur- rence of strong foreshocks (FORE model) using an alarm-based approach. We apply the two rate-based models (ETAS and EEPAS) estimating the best probability threshold above which we issue an alarm. The model parameters and probability thresholds for issuing the alarms are calibrated on a learning data set from 1990 to 2011 during which 27 target earthquakes have occurred within the analysis region. The pseudo-prospective forecasting performance is as- sessed on a validation data set from 2012 to 2021, which also comprises 27 target earthquakes. Tests to assess the forecasting capability demonstrate that, even if all models outperform a purely random method, which trivially forecast earthquake proportionally to the space–time occupied by alarms, the EEPAS model exhibits lower forecasting performance than ETAS and FORE models. In addition, the relative performance comparison of the three models demonstrates that the forecasting capability of the FORE model appears slightly better than ETAS, but the difference is not statistically significant as it remains within the uncertainty level. However, truly prospective tests are necessary to validate such results, ideally using new testing procedures allowing the analysis of alarm-based models, not yet available within the CSEP.
    Description: Published
    Description: 1541–1551
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Keywords: Computational seismology ; Earthquake interaction, forecasting and prediction ; Statistical seismology ; Comparison betwee earthquake forecasting methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-17
    Description: Thermobarometry provides a critical means of assessing locations of magma storage and dynamics in the lead-up to volcanic eruptions and crustal growth. A common approach is to utilise minerals that have compositions sensitive to changes in pressure and/or temperature, such as clinopyroxene, which is ubiquitous in mafic to intermediate magmas. However, clinopyroxene thermobarometry may carry significant uncertainty and require an appropriate equilibrium melt composition. In addition, the degree of magma undercooling (ΔT) affects clinopyroxene composition and zoning, with common sector zoning potentially obfuscating thermobarometry results. Here, we use a set of crystallisation experiments on a primitive trachybasalt from Mt. Etna (Italy) at ΔT = 25–233 °C, P = 400–800 MPa, H2O = 0–4 wt % and fO2 = NNO + 2, with clinopyroxene crystals defined by Al-rich zones (prisms and skeletons) and Al-poor zones (hourglass and overgrowths) to assess common equilibrium models and thermobarometric approaches. Under the studied conditions, our data suggest that the commonly applied Fe–Mg exchange (cpx-meltKdFe–Mg) is insensitive to increasing ΔT and may not be a reliable indicator of equilibrium. The combined use of DiHd (CaMgSi2O6 + CaFeSi2O6) and EnFs (Mg2Si2O6 + Fe2Si2O6) models indicate the attainment of equilibrium in both Al-rich and Al-poor zones for almost all investigated ΔT. In contrast, CaTs (CaAl2SiO6) and CaTi (CaTiAl2O6) models reveal substantial deviations from equilibrium with increasing ΔT, particularly in Al-rich zones. We postulate that this reflects slower diffusion of Al and Ti in the melt compared with Ca and Mg and recommend the concurrent application of these four models to evaluate equilibrium between clinopyroxene and melt, particularly for sector-zoned crystals. Thermobarometers calibrated with only isothermal–isobaric experiments closely reproduce experimental P–T at low ΔT, equivalent to natural phenocrysts cores and sector-zoned mantles. Models that also consider decompression experiments are most accurate at high ΔT and are therefore suitable for outermost phenocryst rims and groundmass microlites. Recent machine learning approaches reproduce P–T conditions across all ΔT conditions. Applying our experimental constraints to sector-zoned microphenocrysts and groundmass microlites erupted during the 1974 eccentric eruption at Mt. Etna, we highlight that both hourglass and prism sectors are suitable for thermobarometry, given that equilibrium is sufficiently tested for. The combination of DiHd, EnFs, CaTs and CaTi models identifies compositions closest to equilibrium with the bulk melt composition, and results in smaller differences in P–T calculated for hourglass and prism sectors compared with applying only DiHd and EnFs equilibrium models. This provides a framework to assess crystallisation conditions recorded by sector-zoned clinopyroxene crystals in mafic alkaline settings.
    Description: Published
    Description: egad074
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Experimental Petrology ; Petrology ; Clinopyroxene ; Thermobarometry ; Experimental Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...