ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (39,813)
  • 2020-2024  (34,715)
  • 1990-1994  (5,087)
  • 1945-1949  (11)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2024-06-20
    Description: Abstract
    Description: This data publication includes the half-hourly Hp30 and ap30 indices as well as the hourly Hp60 and ap60 indices, collectively denoted as Hpo. This dataset is based on near real-time geomagnetic observatory data provided by 13 contributing observatories. It is derived and distributed by GFZ German Research Centre for Geosciences. When using the Hpo index, please cite this data publication as well as the accompanying publication Yamazaki et al. (submitted), which serves as documentation of the Hpo. The dataset is organised in yearly files, which, for the current year, are updated on a monthly basis. Typically, during the second week of a month, the data for the previous month is appended to the current year's file. The files are in ASCII files and start with header lines marked with # (hash). The Hpo index was developed within the H2020 project SWAMI (grant agreement No 776287) and is produced by Geomagnetic Observatory Niemegk, GFZ German Research Centre for Geosciences. It derives from the same 13 geomagnetic observatories that also contribute to the Kp index (Matzka et al., 2021, https://doi.org/10.5880/Kp.0001). They are listed as contributors to this data publication. With the introduction of the DOI for the Hpo index (Matzka et al, 2021, https://doi.org/10.5880/Hpo.0001), this DOI landing page and the associated HTTPS server linked to the DOI become the primary archive of Hpo (while the other established index distribution mechanisms at GFZ will be maintained in parallel). With the DOI, the dataset can grow with time, but a change of the data, once published, is not possible. If necessity arises in the future to correct already published values, then the corrected dataset will be published with a new DOI. Older DOIs and data sets will then still be available. For each DOI, an additional versioning mechanism will be available to document changes to the files such as header or format changes, which do not affect the integrity of the data. The DOI https://doi.org/10.5880/Hpo.0002 identifies the current version. A format description and a version history are provided in the data download folder.
    Description: Other
    Description: Version history: 2022-03-26 ---------- Publication of Version Hpo.0002. This version replaces version Hpo.0001. The Hpo, like the Kp nowcast, is based on the FMI algorithm (see Matzka et al., 2021, https://doi.org/10.1029/2020SW002641) and goes through a rescaling procedure to be more similar to the definitive Kp values. The data in version Hpo.0001 from 2018 onwards suffered from a slight error in this rescaling algorithm, causing for example somewhat too few Hpo 0 values and somewhat too many Hpo 0.333 values. This error was corrected for version Hpo.0002. The values from 1995 to 2017 are identical for both versions. 2021-04-26 ---------- Publication of Version Hpo.0001
    Keywords: Hpo ; Hpo index ; Hp30 ; ap30 ; Hp60 ; ap60 ; Kp ; Kp index ; ap index ; geomagnetism ; space weather ; space physics ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 GEOMAGNETIC INDICES 〉 KP INDEX ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 AURORAE ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 GEOMAGNETIC INDICES ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 MAGNETIC FIELDS/MAGNETIC CURRENTS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 MAGNETIC STORMS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 SOLAR WIND
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-20
    Description: Abstract
    Description: All datasets provided in the operational dataset (Heubeck et al., 2024) of the ICDP project BASE (ICDP 5069) consist of metadata, data and/or images. Here, a summary of explanations of the tables, data and images exported from the database of the project (mDIS BASE) are given and are complemented by additional information on data from measurements done in the laboratory prior to the sampling party. Finally, the sampling data from the first two sampling parties are added. Some basic definitions of identifiers used in ICDP, depths corrections and measurements are also introduced. The BASE (Barberton Archean Surface Environments) scientific drilling project focused on recovering unweathered continuous core through strata of the Paleoarchean Moodies Group (ca. 3.2 Ga), central Barberton Greenstone Belt (BGB), South Africa. They comprise some of the oldest well-preserved sedimentary strata on Earth, deposited within only a few million years in alluvial, fluvial, coastal-deltaic, tidal, and prodeltaic settings; they represent a very-high-resolution record of Paleoarchean surface conditions and processes. Moodies Group strata consist of polymict conglomerates, widespread quartzose, lithic and arkosic sandstones, siltstones, shales, and rare BIFs and jaspilites, interbedded with tuffs and several thin lavas. This report describes operations from preparations to the sampling workshop and complements the related scientific report. Eight inclined boreholes between 280 and 495 m length, drilled during November 2021 through July 2022, obtained a total of 2903 m of curated core of variable quality through steeply to subvertically dipping, in part overturned stratigraphic sections. All drilling objectives were reached. Boreholes encountered a variety of conglomerates, diverse and abundant, mostly tuffaceous sandstones, rhythmically laminated shale-siltstone and banded-iron formations, and several horizons of early-diagenetic sulfate concretions. Oxidative weathering reached far deeper than expected; fracturing was more intense, and BIFs and jaspilites were thicker than anticipated. Two km-long mine adits and a water tunnel, traversing four thick stratigraphic sections within the upper Moodies Group in the central BGB, were also sampled. All boreholes were logged by geophysical instruments. Core was processed (oriented, slabbed, photographed, described, and archived) in a large, publicly accessible hall in downtown Barberton. An exhibition provided background explanations for visitors and related the drilling objectives to the recently established Barberton-Makhonjwa Mountains World Heritage Site. A substantial education, outreach and publicity program addressed the information needs of the local population and of local and regional stakeholders.
    Keywords: Africa ; South Africa ; Barberton ; Early Life Ecology ; Greenstone Belt ; Moodies ; ocean and atmosphere ; oxygen ; ICDP ; International Continental Scientific Drilling Programme ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 BOREHOLES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; Precambrian 〉 Archean
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-20
    Description: Multibeam bathymetry raw data was recorded in the North Atlantic during cruise MSM70 that took place between 2017-12-25 and 2018-02-04. The data was collected using the ship's own Kongsberg EM 122. Sound velocity profiles (SVP) were applied on the data for calibration. SVP data are part of this dataset publication. This data is part of the DAM (German Marine Research Alliance) underway research data project.
    Keywords: Bathymetry; Binary Object; DAM_Underway; DAM Underway Research Data; Data file recording distance; Data file recording duration; DATE/TIME; EM122; EM122 multibeam echosounder; Event label; Expendable Sound Velocimeter; File content; LATITUDE; LONGITUDE; Maria S. Merian; MSM70; MSM70_0_underway-8; MSM70_1-1; MSM70_28-1; Multibeam Echosounder; Ship speed; Sound velocity profiler; South Atlantic Ocean; Start of data file recording, date/time; Start of data file recording, latitude; Start of data file recording, longitude; Stop of data file recording, date/time; Stop of data file recording, latitude; Stop of data file recording, longitude; SVP; XSV
    Type: Dataset
    Format: text/tab-separated-values, 5979 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-20
    Description: The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed. The data file 'time_TG_helical.dat' shows the time series of the maximum energy amplification of a helical perturbation. This file includes five columns: the first column indicates streamwise wavenumber or axial wavenumber; the second column indicates the azimuthal wavenumber; the third column indicates the phase of the perturbation; the fourth column indicates the dimensionless time; the fifth column indicates the maximum energy amplification at the time instant.
    Keywords: Axial wave number; Azimuthal wave number; Dimensionless time; nonlinear instability; Pulsation phase; Transient energy growth; transition to turbulence
    Type: Dataset
    Format: text/tab-separated-values, 2730 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-20
    Description: The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed. The data file 'time_wavenumber.dat' shows the optimal wavenumber (corresponding to the maximum energy amplification) at a time instant. This file includes three columns: the first column indicates the dimensionless time normalized by the pulsation period; the second column indicates the optimal axial wavenumber at the time instant; the third column indicates the optimal azimuthal wavenumber at the time instant.
    Keywords: Axial wave number; Azimuthal wave number; nonlinear instability; Time by pulsation period; transition to turbulence
    Type: Dataset
    Format: text/tab-separated-values, 303 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-20
    Description: The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed. The data file 't0_TG_contour.dat' shows the maximum energy amplification over modes in the parameter regime of initial time and final time. This file includes three columns: the first column indicates initial time of perturbations normalized by pulsation period; the second column indicates the evolution time of the perturbation normalized by period; the third column indicates the energy amplification corresponding to the initial time (first column) and the evolution time (second column).
    Keywords: nonlinear instability; Time of pertubartion by pulsation period; Time of perturbation energy maximum - Time of perturbation by pulsation period; Transient energy growth; transition to turbulence
    Type: Dataset
    Format: text/tab-separated-values, 30000 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-20
    Description: The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed. The data file 't0_TG_contour.dat' shows the maximum energy amplification over modes in the parameter regime of initial time and final time. This file includes three columns: the first column indicates initial time of perturbations normalized by pulsation period; the second column indicates the evolution time of the perturbation normalized by period; the third column indicates the energy amplification corresponding to the initial time (first column) and the evolution time (second column).
    Keywords: nonlinear instability; Time of pertubartion by pulsation period; Time of perturbation energy maximum - Time of perturbation by pulsation period; Transient energy growth; transition to turbulence
    Type: Dataset
    Format: text/tab-separated-values, 1323 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-20
    Description: The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed. The data file 'TG_A_Wo20.dat' shows the dependence of the maximum energy amplification on the pulsation amplitude for the Reynolds number of 2000 and the Womersley number of 20. This file includes two columns: the first column indicates the pulsation amplitude; the second column indicates the maximum energy amplification.
    Keywords: nonlinear instability; Pulsation amplitude; Transient energy growth; transition to turbulence
    Type: Dataset
    Format: text/tab-separated-values, 18 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-20
    Description: The data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed. The data file 'time_TG_A2.6.dat' shows the time series of the maximum energy amplification for the Reynolds number of 2000, the amplitude of 2.6 and the Womersley number of 15. This file includes three columns: the first column indicates the time; the second column indicates the time normalized by the pulsation period; the third column indicates maximum energy amplification.
    Keywords: Dimensionless time; Maximum of transient energy growth; nonlinear instability; Time by pulsation period; transition to turbulence
    Type: Dataset
    Format: text/tab-separated-values, 45000 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-20
    Description: TThe data are obtained via an in-house Matlab script (developed by Dr. Baofang Song) to compute the non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. In this study, a Newtonian fluid driven by pulsatile and oscillatory flow rate flows in a straight pipe. In pulsatile flow, there are three governing parameters: steady Reynolds number (defined by the steady flow component), pulsation amplitude (ratio of oscillatory and steady flow component) and Womersley number (dimensionless pulsation and oscillation frequency). In oscillatory flow, due to vanishment of steady flow component, oscillatory Reynolds number (defined by the oscillation flow component) and Womersley number. The Reynolds number defined by the thickness of Stokes layer is alternatively used for the oscillatory Reynolds number. The study was carried out in a manner that one governing parameter varies while other governing parameters are fixed. The data file 'wavenumber_Wo_Reo8000.dat' shows the dependence of the optimal wavenumber on the Womersley number for the oscillatory Reynolds number of 8000. This file includes twelve columns: the first column indicates the Womersley number; the second column indicates the pulsation period; the third column indicates the optimal axial wavenumber; the fourth column indicates the optimal azimuthal wavenumber; the fifth column indicates the initial time of the optimal perturbation; the sixth column indicates the final time of the optimal perturbation; the seventh column indicates the evolution time of the optimal perturbation; the eighth column indicates the initial time of the optimal perturbation normalized by the pulsation period; the nineth column indicates the final time of the optimal perturbation normalized by the pulsation period; the tenth column indicates the evolution time of the optimal perturbation normalized by the pulsation period; the eleventh column indicates the maximum energy amplification; the twelfth column indicates the Reynolds number which is defined with the characteristic length of the thickness of the Stokes layer.
    Keywords: Axial wave number; Azimuthal wave number; nonlinear instability; Pulsation period; Reynolds number of the Stokes layer; Time of pertubartion by pulsation period; Time of pertubartion energy maximum by pulsation period; Time of perturbation; Time of perturbation energy maximum; Time of perturbation energy maximum - Time of perturbation (tf-t0); Time of perturbation energy maximum - Time of perturbation by pulsation period; Transient energy growth; transition to turbulence; Womersley number
    Type: Dataset
    Format: text/tab-separated-values, 132 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...