ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • RAPD  (288)
  • Triticum aestivum  (229)
  • 04.06. Seismology
  • Creep observations and analysis
  • Springer  (522)
  • Elsevier  (14)
  • Oxford University Press - The Royal Astronomical Society  (9)
  • Wiley-AGU  (5)
  • EGU - Copernicus
  • Wiley
  • 2020-2024  (37)
  • 1995-1999  (514)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2023-10-24
    Description: Numerous sand boils were generated in the alluvial plain at the mouth of the Rio Brice˜no valley (Ecuador) during the Mw 7.8 earthquake of April 2016. The area is characterized by a series of raised marine terraces formed as a consequence of the rapid tectonic coastal uplift during the Quaternary. Boreholes and geotechnical investigations were carried during post-earthquake surveys and for the purpose of mitigating the liquefaction effects. Five lithological units were identified at a site of embankment, which represented continental-marine and transitional sedimentation since the Last Glacial Maximum. A comprehensive study of texture and petrographic composition of sand boils has been performed and compared with sandy silts and silty sands of the buried sedimentary sequence in order to identify the source levels for liquefaction. The petrographic components, in particular the low content of bioclasts and carbonate fragments of the sand boils, allow to pinpoint a source layer made up of fine-grained silty sands located between 2 and 4.5 m depth (Unit 2) whereas the deeper marine sands, richer in bioclasts, were not involved. The results support the idea that earthquake-induced liquefaction phenomena are not restricted to clean sands and well-sorted deposits, but may affect sand layers with significant amount of nonplastic silt.
    Description: Published
    Description: 102737
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Earthquake-induced liquefaction ; Sand blows ; Ecuadorian coast ; Sand composition ; Holocene depositional sequences ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-26
    Description: In active volcanic zones, fault dynamics is considerably fast but it is often difficult to separate the pattern of nearly continuous large-scale volcanic processes (inflation/deflation processes, flank instability) from impulsive episodes such as dyke intrusions or coseismic fault displacements. At Etna, multidisciplinary studies on active faults whose activity does not strictly depend on volcanic processes, are relatively few. Here we present the case-study of the San Leonardello fault, an active structure located in the eastern flank of Mt. Etna characterised by a well-known seismic history. This fault saw renewed activity in May 2009, when pre-seismic creeping along the southern segment preceded an MW 4.0 earthquake in the northern segment, followed by some twenty-five aftershocks. Later, in March–April 2016, creep events reactivated the southern section of the same fault. Both the seismic and aseismic phenomena were recorded by the seismic and GNSS networks of INGV-Osservatorio Etneo, and produced surface faulting that left a footprint in the pattern of ground deformation detected by the InSAR measurements. We demonstrate that the integration of multidisciplinary data collected for volcano surveillance may shed light on different aspects of fault dynamics, and allow understanding how coseismic slip and creep alternate in space and time along the strike. Moreover, we use findings from our independent datasets to propose a conceptual model of the San Leonardello fault, taking into account behaviour and previous constraints from fault-based seismic hazard analyses. Although the faulting mechanisms described here occur at a very small scale compared with those of a purely tectonic setting, this case-study may represent a perfect natural lab for improving knowledge of seismogenic processes, also in other fault zones characterised by stick slip vs. stablesliding fault behaviour.
    Description: Published
    Description: 228554
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Fault ; Earthquake ; Creep ; Seismotectonics ; Behaviour ; Mt. Etna volcano ; 04.07. Tectonophysics ; 04.06. Seismology ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-26
    Description: Over the last decade machine learning has become increasingly popular for the analysis and characterization of volcano-seismic data. One of the requirements for the application of machine learning methods to the problem of classifying seismic time series is the availability of a training dataset; that is a suite of reference signals, with known classification used for initial validation of the machine outcome. Here, we present PICOSS (Python Interface for the Classification of Seismic Signals), a modular data-curator platform for volcano-seismic data analysis, including detection, segmentation and classification. PICOSS has exportability and standardization at its core; users can select automatic or manual workflows to select and label seismic data from a comprehensive suite of tools, including deep neural networks. The modular implementation of PICOSS includes a portable and intuitive graphical user interface to facilitate essential data labelling tasks for large-scale volcano seismic studies.
    Description: Published
    Description: 104531
    Description: 8T. Sismologia in tempo reale
    Description: JCR Journal
    Keywords: Volcanoes ; Software ; Classification ; Segmentation ; Detection ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-21
    Description: We develop a new inversion approach to construct a 3-D structural and shear-wave velocity model of the crust based on teleseismic P-to-S converted waves. The proposed approach does not require local earthquakes such as body wave tomography, nor a large aperture seismic network such as ambient noise tomography, but a three-component station network with spacing similar to the expected crustal thickness. The main features of the new method are: (1) a novel model parametrization with 3-D mesh nodes that are fixed in the horizontal directions but can flexibly vary vertically; (2) the implementation of both sharp velocity changes across discontinuities and smooth gradients; (3) an accurate ray propagator that respects Snell’s law in 3-D at any interface geometry. Model parameters are inverted using a stochastic method composed of simulated annealing followed by a pattern search algorithm. The first application is carried out over the Central Alps, where long-standing permanent and the temporary AlpArray Seismic Network stations provide an ideal coverage. For this study we invert 4 independent parameters, which are the Moho discontinuity depth, the Conrad discontinuity depth, the P-velocity change at the Conrad and the average Vp/Vs of the crust. The 3-D inversion results clearly image the roots of the Alpine orogen, including the Ivrea Geophysical Body. The lower crust's thickness appears fairly constant. Average crustal Vp/Vs ratios are relatively higher beneath the orogen, and a low-Vp/Vs area in the northern foreland seems to correlate with lower crustal earthquakes, which can be related to mechanical differences in rock properties, probably inherited. Our results are in agreement with those found by 3-D ambient noise tomography, though our method inherently performs better at localizing discontinuities. Future developments of this technique can incorporate joint inversions, as well as more efficient parameter space exploration.
    Description: Published
    Description: 529 - 562
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Computational seismology ; Receiver functions  ; Inverse theory ; Crustal imaging ; Central Alps ; 05.01. Computational geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-21
    Description: We present the first three-dimensional (3D) anisotropic teleseismic P-wave tomography model of the upper mantle covering the entire Central Mediterranean. Compared to isotropic tomography, it is found that including the magnitude, azimuth, and, importantly, dip of seismic anisotropy in our inversions simplifies isotropic heterogeneity by reducing the magnitude of slow anomalies while yielding anisotropy patterns that are consistent with regional tectonics. The isotropic component of our preferred tomography model is dominated by numerous fast anomalies associated with retreating, stagnant, and detached slab segments. In contrast, relatively slower mantle structure is related to slab windows and the opening of back-arc basins. To better understand the complexities in slab geometry and their relationship to surface geological phenomenon, we present a 3D reconstruction of the main Central Mediterranean slabs down to 700 km based on our anisotropic model. P-wave seismic anisotropy is widespread in the Central Mediterranean upper mantle and is strongest at 200-300 km depth. The anisotropy patterns are interpreted as the result of asthenospheric material flowing primarily horizontally around the main slabs in response to pressure exerted by their mid-to-late Cenezoic horizontal motion, while sub-vertical anisotropy possibly reflects asthenospheric entrainment by descending lithosphere. Our results highlight the importance of anisotropic P-wave imaging for better constraining regional upper mantle geodynamics.
    Description: This study is supported by the ERC StG 758199 NEWTON.
    Description: Published
    Description: e2021JB023488
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Central Mediterranean ; P‐wave tomography ; mantle dynamics ; seismic anisotropy ; slab geometry ; subduction zone ; 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-21
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: The Western Alps shows a complex crustal organization due to the subduction of the European Plate beneath the Adriatic Plate and exhumation of the mantle wedge. The lithospheric structure of the Western Alps, that may hold significance for understanding orogenic processes and evolution, has been the subject of many geophysical studies, but the Moho profile remains unclear and this has led to controversies about the depth and extent of the European Plate beneath the Adriatic Plate. With the goal of retrieving detailed information on crustal constitution, we use autocorrelation of seismic ambient noise as a tool to map the body wave reflectivity structure at the subduction zone under the southwestern Alps. We use data recorded by the China–Italy–France Alps (CIFALPS) seismic transect, that includes 45 stations located approximately 5–10 km apart along a profile crossing the Alpine continental subduction in the Western Alps. We analyse the data set in four different frequency bands between 0.09 and 2 Hz. We automatically pick the arrival time of the Moho reflection in the second derivative of the envelope of the autocorrelation stack using prior Moho information. The 0.5–1 Hz frequency band mostly gives the best result due to the clear changes in reflectivity along the waveforms of the autocorrelation stacks after the picked arrival times of the Moho reflections. We find spatial coherence between 18 and 23 km depth in the western portion of the profile, indicating relatively homogeneous crustal rocks, and highly reflective structure under the central mountain range, due to the existence of a highly faulted zone. The very thin crust and the underlying mantle wedge known as the Ivrea body show instead high transparency to seismic waves and absence of reflections. The subduction profile of the European Plate shows a steep trend as compared to previous studies. We discuss autocorrelation stacks and Moho depths obtained from the arrival times of the picked reflectivity change in comparison with previous studies to validate the different reflection structures. Stacked ambient noise autocorrelations reliably image varied crustal properties and reflectivity structures in the highly heterogeneous region of the southwestern Alps.
    Description: Published
    Description: 298–316
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Europe ; Body waves ; Seismic Interferometry ; Seismic noise ; Crustal structure ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-21
    Description: The complex tectonic setting of the central-western Mediterranean has interested geoscientists for decades, but its geodynamic evolution remains a matter of debate. We rely on 807 seismometers from southern Europe and northern Africa to measure Rayleigh and Love phase velocities in the period range ∼5–200 s, based on teleseismic earthquakes and seismic ambient noise. By nonlinear joint inversion of the phase-velocity maps, we obtain a 3-D shear-wave velocity (VS) model of the study area. At shallow depths, our model correlates with surface geology and reveals the presence of a sedimentary cover in the Liguro-Provençal basin, as opposed to the Tyrrhenian basin where this is either very thin or absent. At ∼5-km depth, high velocities below the Magnaghi, Vavilov, and Marsili seamounts point to an exhumed, scarcely serpentinized mantle. These are replaced by lower velocities at larger depths, likely connected to the presence of partial melt. At 50–60-km depth, a very heterogeneous structure characterizes the Tyrrhenian basin, with low velocities pointing to the presence of fluids due to the lateral mantle inflow from the Ionian slab edges, and higher velocities associated with a relatively dry upper mantle. Such heterogeneity disappears at depths ≳75 km, replaced by more uniform velocities which are ∼2% lower than those found in the Liguro-Provençal basin. We infer that, at the same depths, the Tyrrhenian basin is characterized by a larger concentration of fluids and possibly higher temperatures.
    Description: The Grant to the Department of Science, Roma Tre University (MIUR-Italy Dipartimenti di Eccellenza, ARTICOLO 1, COMMI 314-337 LEGGE 232/2016) German Academic Exchange Service (DAAD, Grant 57030312). Projekt DEAL. Funded by the Deutsche Forschungsgemeinschaft (DFG - German Research Foundation) under the Individual Research Project: SI 1748/4-1.
    Description: Published
    Description: e2021JB023267
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-21
    Description: We take advantage of the new large AlpArray Seismic Network (AASN) as part of the AlpArray research initiative (www.alparray.ethz.ch), to establish a consistent seismicity-catalogue for the greater Alpine region (GAR) for the time period 2016 January 1–2019 December 31. We use data from 1103 stations including the AASN backbone composed of 352 permanent and 276 (including 30 OBS) temporary broad-band stations (network code Z3). Although characterized by a moderate seismic hazard, the European Alps and surrounding regions have a higher seismic risk due to the higher concentration of values and people. For these reasons, the GAR seismicity is monitored and routinely reported in catalogues by a 11 national and 2 regional seismic observatories. The heterogeneity of these data set limits the possibility of extracting consistent information by simply merging to investigate the GAR's seismicity as a whole. The uniformly spaced and dense AASN provides, for the first time, a unique opportunity to calculate high-precision hypocentre locations and consistent magnitude estimation with uniformity and equal uncertainty across the GAR. We present a new, multistep, semi-automatic method to process ∼50 TB of seismic signals, combining three different software. We used the SeisComP3 for the initial earthquake detection, a newly developed Python library ADAPT for high-quality re-picking, and the well-established VELEST algorithm both for filtering and final location purposes. Moreover, we computed new local magnitudes based on the final high-precision hypocentre locations and re-evaluation of the amplitude observations. The final catalogue contains 3293 seismic events and is complete down to local magnitude 2.4 and regionally consistent with the magnitude 3+ of national catalogues for the same time period. Despite covering only 4 yr of seismicity, our catalogue evidences the main fault systems and orogens’ front in the region, that are documented as seismically active by the EPOS-EMSC manually revised regional bulletin for the same time period. Additionally, we jointly inverted for a new regional minimum 1-D P-wave velocity model for the GAR and station delays for both permanent station networks and temporary arrays. These results provide the base for a future re-evaluation of the past decades of seismicity, and for the future seismicity, eventually improving seismic-hazard studies in the region. Moreover, we provide a unique, consistent seismic data set fundamental to further investigate this complex and seismically active area. The catalogue, the minimum 1-D P-wave velocity model, and station delays associated are openly shared and distributed with a permanent DOI listed in the data availability section.
    Description: The AlpArray-Switzerland project is funded by the Swiss-AlpArray SINERGIA project CRSII2_154434/1 by Swiss National Science Foundation (SNSF).
    Description: Published
    Description: 921-943
    Description: 1T. Struttura della Terra
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Earthquake source observations ; Seismicity ; Tectonics ; Statistical seismology ; 04.06. Seismology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-21
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: To improve our understanding of the Earth’s interior, seismologists often have to deal with enormous amounts of data, requiring automatic tools for their analyses. It is the purpose of this study to present SeisLib, an open-source Python package for multiscale seismic imaging. At present, SeisLib includes routines for carrying out surface-wave tomography tasks based on seismic ambient noise and teleseismic earthquakes. We illustrate here these functionalities, both from the theoretical and algorithmic point of view and by application of our library to seismic data from North America. We first show how SeisLib retrieves surface-wave phase velocities from the ambient noise recorded at pairs of receivers, based on the zero crossings of their normalized cross-spectrum. We then present our implementation of the two-station method, to measure phase velocities from pairs of receivers approximately lying on the same great-circle path as the epicentre of distant earthquakes. We apply these methods to calcu- late dispersion curves across the conterminous United States, using continuous seismograms from the transportable component of USArray and earthquake recordings from the permanent networks. Overall, we measure 144 272 ambient-noise and 2055 earthquake-based dispersion curves, that we invert for Rayleigh-wave phase-velocity maps. To map the lateral variations in surface-wave velocity, SeisLib exploits a least-squares inversion algorithm based on ray theory. Our implementation supports both equal-area and adaptive parametrizations, with the latter al- lowing for a finer resolution in the areas characterized by high density of measurements. In the broad period range 4–100 s, the retrieved velocity maps of North America are highly correlated (on average, 96 per cent) and present very small average differences (0.14 ± 0.1 per cent) with those reported in the literature. This points to the robustness of our algorithms. We also produce a global phase-velocity map at the period of 40 s, combining our dispersion measurements with those collected at global scale in previous studies. This allows us to demonstrate the reliability and optimized computational speed of SeisLib, even in presence of very large seismic inverse problems and strong variability in the data coverage. The last part of the manuscript deals with the attenuation of Rayleigh waves, which can be estimated through SeisLib based on the seismic ambient noise recorded at dense arrays of receivers. We apply our algorithm to produce an at- tenuation map of the United States at the period of 4 s, which we find consistent with the relevant literature.
    Description: Funded by the Deutsche Forschungsgemeinschaft (DFG - German Research Foundation) under the Individual Research Project: SI 1748/4- 1. German Science Foundation: Deutsche Forschungsgemeinschaft (www.dfg.de; SPP-2017, Project Ha 2403/21-1).
    Description: Published
    Description: 1011-1030
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Inverse theory ; Seismic tomography ; Surface waves ; free oscillations ; 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-21
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: Different approaches to map seismic rupture in space and time often lead to incoherent results for the same event. Building on earlier work by our team, we ‘time-reverse’ and ‘backpropagate’ seismic surface wave recordings to study the focusing of the time-reversed field at the seismic source. Currently used source-imaging methods relying on seismic recordings neglect the information carried by surface waves, and mostly focus on the P-wave arrival alone. Our new method combines seismic time reversal approach with a surface wave ray-tracing algorithm based on a generalized spherical-harmonic parametrization of surface wave phase velocity, accounting for azimuthal anisotropy. It is applied to surface wave signal filtered within narrow-frequency bands, so that the inherently 3-D problem of simulating surface wave propagation is separated into a suite of 2-D problems, each of relatively limited computational cost. We validate our method through a number of synthetic tests, then apply it to the great 2004 Sumatra–Andaman earthquake, characterized by the extremely large extent of the ruptured fault. Many studies have estimated its rupture characteristics from seismological data (e.g. Lomax, Ni et al., Guilbert et al., Ishii et al., Krüger & Ohrnberger, Jaffe et al.) and geodetic data (e.g. Banerjee et al., Catherine et al., Vigny et al., Hashimoto et al., Bletery et al.). Applying our technique to recordings from only 89 stations of the Global Seismographic Network (GSN) and bandpass filtering the corresponding surface wave signal around 80-to-120, 50-to-110 and 40-to-90 s, we reproduce the findings of earlier studies, including in particular the northward direction of rupture propagation, its approximate spatial extent and duration, and the locations of the areas where most energy appears to be released.
    Description: Published
    Description: 1018-1035
    Description: 1T. Struttura della Terra
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Earthquake source observations ; Surface waves and free oscillations ; Theoretical seismology ; Wave propagation ; 04.06. Seismology ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...