ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (50,168)
  • Other Sources  (1)
  • American Institute of Physics (AIP)  (49,884)
  • Frontiers Media
  • 2020-2024  (285)
  • 1995-1999  (49,884)
Collection
  • Articles  (50,168)
  • Other Sources  (1)
Years
Year
Journal
  • 1
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In:  Physics Today, 51 (12). p. 32.
    Publication Date: 2021-02-25
    Description: Bringer of storms and droughts, the El Niño∕Southern Oscillation results from the complex, sometimes chaotic interplay of ocean and atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-29
    Description: Flaxseed (Linum usitatissimum L.) is an oilseed that is used in both industry and food production. Flaxseed contains biologically active compounds including linolenic acid, linoleic acid, and lignans. Flaxseed powder (2.5–10% w/w) and chicken eggs (10–30% v/w) were substituted in cake wheat flour for fried dough (magwinya) production. The physicochemical properties of the fried dough were determined and compared with the control. There was a significant (p 〈 0.05) increase in moisture, protein, ash, and hardness and a decrease in fat content of fried dough enriched with egg (FDE) and flaxseed powder (FDFX). Enrichment with 30% (v/w) egg and/or 7.5–10% flaxseed powder resulted in higher protein, oil reduction, and ash contents compared with the rest of the products. With the current interest in plant-based protein, flaxseed is a good choice of flour-based snacks for consumers without compromise in nutrition.
    Electronic ISSN: 2571-581X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-29
    Description: Arginase (ARG) represents an important evolutionarily conserved enzyme that is expressed by multiple cell types in the skin. Arg acts as the mediator of the last step of the urea cycle, thus providing protection against excessive ammonia under homeostatic conditions through the production of L-ornithine and urea. L-ornithine represents the intersection point between the ARG-dependent pathways and the urea cycle, therefore contributing to cell detoxification, proliferation and collagen production. The ARG pathways help balance pro- and anti-inflammatory responses in the context of wound healing. However, local and systemic dysfunctionalities of the ARG pathways have been shown to contribute to the hindrance of the healing process and the occurrence of chronic wounds. This review discusses the functions of ARG in macrophages and fibroblasts while detailing the deleterious implications of a malfunctioning ARG enzyme in chronic skin conditions such as leg ulcers. The review also highlights how ARG links with the microbiota and how this impacts on infected chronic wounds. Lastly, the review depicts chronic wound treatments targeting the ARG pathway, alongside future diagnosis and treatment perspectives.
    Electronic ISSN: 2296-889X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-29
    Description: The challenge of effectively regenerating bone tissue through tissue engineering technology is that most tissue engineering scaffolds cannot imitate the three-dimensional structure and function of the natural extracellular matrix. Herein, we have prepared the poly(L-lactic acid)–based dual bioactive component reinforced nanofiber mats which were named as poly(L-lactic acid)/bovine serum albumin/nanohydroxyapatite (PLLA/BSA/nHAp) with dual bioactive components by combining homogeneous blending and electrospinning technology. The results showed that these nanofiber mats had sufficient mechanical properties and a porous structure suitable for cell growth and migration. Furthermore, the results of cell experiments in vitro showed that PLLA/BSA/nHAp composite nanofiber mat could preferably stimulate the proliferation of mouse osteoblastic cells (MC3T3 cells) compared with pure PLLA nanofiber mats. Based on these results, the scaffolds developed in this study are considered to have a great potential to be adhibited as bone repair materials.
    Electronic ISSN: 2296-2646
    Topics: Chemistry and Pharmacology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-29
    Description: Redox homeostasis has been linked to proper anther and pollen development. Accordingly, plant cells have developed several Reactive Oxygen Species (ROS)-scavenging mechanisms to maintain the redox balance. Hemopexins constitute one of these mechanisms preventing heme-associated oxidative stress in animals, fungi, and plants. Pisum sativum ENDOTHECIUM 1 (PsEND1) is a pea anther-specific gene that encodes a protein containing four hemopexin domains. We report the functional characterization of PsEND1 and the identification in its promoter region of cis-regulatory elements that are essential for the specific expression in anthers. PsEND1 promoter deletion analysis revealed that a putative CArG-like regulatory motif is necessary to confer promoter activity in developing anthers. Our data suggest that PsEND1 might be a hemopexin regulated by a MADS-box protein. PsEND1 gene silencing in pea, and its overexpression in heterologous systems, result in similar defects in the anthers consisting of precocious tapetum degradation and the impairment of pollen development. Such alterations were associated to the production of superoxide anion and altered activity of ROS-scavenging enzymes. Our findings demonstrate that PsEND1 is essential for pollen development by modulating ROS levels during the differentiation of the anther tissues surrounding the microsporocytes.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-29
    Description: Fishes of the genus Acanthurus (Acanthuridae) are strongly related to reef environments, in a broad biogeographic context worldwide. Although their biological aspects are well known, cytogenetic information related to this genus remains incipient. In this study, Acanthurus species from populations inhabiting coastal regions of the Southwest Atlantic (SWA), South Atlantic oceanic islands (Fernando de Noronha Archipelago and Trindade Island), Greater Caribbean (GC), and Indo-Pacific Ocean (the center of the origin of the group) were analyzed to investigate their evolutionary differentiation. For this purpose, we employed conventional cytogenetic procedures and fluorescence in situ hybridization of 18S rDNA, 5S rDNA, and H3 and H2B-H2A histone sequences. The Atlantic species (A. coeruleus, A. chirurgus, and A. bahianus) did not show variations among them, despite their vast continental and insular distribution. In contrast, A. coeruleus from SWA and GC diverged from each other in the number of 18S rDNA sites, a condition likely associated with the barrier created by the outflows of the Amazonas/Orinoco rivers. The geminate species A. tractus had a cytogenetic profile similar to that of A. bahianus. However, the chromosomal macrostructures and the distribution of rDNA and hisDNA sequences revealed moderate to higher rates of diversification when Acanthurus species from recently colonized areas (Atlantic Ocean) were compared to A. triostegus, a representative species from the Indian Ocean. Our cytogenetic data covered all Acanthurus species from the Western Atlantic, tracked phylogenetic diversification throughout the dispersive process of the genus, and highlighted the probable diversifying role of ocean barriers in this process.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-29
    Description: Commercial table salt is a condiment with food preservative properties by decreasing water activity and increasing osmotic pressure. Salt is also a source of halophilic bacteria and archaea. In the present research, the diversity of halotolerant and halophilic microorganisms was studied in six commercial table salts by culture-dependent and culture-independent techniques. Three table salts were obtained from marine origins: Atlantic Ocean, Mediterranean (Ibiza Island), and Odiel marshes (supermarket marine salt). Other salts supplemented with mineral and nutritional ingredients were also used: Himalayan pink, Hawaiian black, and one with dried vegetables known as Viking salt. The results of 16S rRNA gene sequencing reveal that the salts from marine origins display a similar archaeal taxonomy, but with significant variations among genera. Archaeal taxa Halorubrum, Halobacterium, Hallobellus, Natronomonas, Haloplanus, Halonotius, Halomarina, and Haloarcula were prevalent in those three marine salts. Furthermore, the most abundant archaeal genera present in all salts were Natronomonas, Halolamina, Halonotius, Halapricum, Halobacterium, Haloarcula, and uncultured Halobacterales. Sulfitobacter sp. was the most frequent bacteria, represented almost in all salts. Other genera such as Bacillus, Enterococcus, and Flavobacterium were the most frequent taxa in the Viking, Himalayan pink, and black salts, respectively. Interestingly, the genus Salinibacter was detected only in marine-originated salts. A collection of 76 halotolerant and halophilic bacterial and haloarchaeal species was set by culturing on different media with a broad range of salinity and nutrient composition. Comparing the results of 16S rRNA gene metataxonomic and culturomics revealed that culturable bacteria Acinetobacter, Aquibacillus, Bacillus, Brevundimonas, Fictibacillus, Gracilibacillus, Halobacillus, Micrococcus, Oceanobacillus, Salibacterium, Salinibacter, Terribacillus, Thalassobacillus, and also Archaea Haloarcula, Halobacterium, and Halorubrum were identified at least in one sample by both methods. Our results show that salts from marine origins are dominated by Archaea, whereas salts from other sources or salt supplemented with ingredients are dominated by bacteria.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-29
    Description: Urbanization and seasonality strongly influence the bacterial composition of the soil. However, aquatic environments such as rivers are understudied owing to their high dynamics and therefore rules relating to more static habitats such as lentic or terrestrial environments may be limited. Here, we compared the spatiotemporal patterns of bacterioplankton communities in the Zhangxi river along a gradient of urbanization using 16S ribosomal DNA identification. The alpha and beta diversity of bacterioplankton showed no significant response to watershed urbanization. A significant difference in predicted functional profiles of the bacterioplankton community was also revealed between the wet and dry seasons. The bacterioplankton community assembly was driven by both deterministic and stochastic processes. Stochasticity was one of the most vital processes affecting the bacterioplankton communities in both wet and dry seasons, explaining over 50% variation in the community by the null model analysis. Bacterioplankton co-occurrence patterns in the river changed with the seasons. More notably, the composition of bacterioplankton communities was inconsistent with alternations of the spatial distance offering meaningful implications for interactions between zero-radius operational taxonomic units and the dynamics of the bacterioplankton communities in surface water. In summary, we found clear patterns of seasonal variations in the bacterioplankton community structures.
    Electronic ISSN: 2296-665X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-27
    Description: Correlated, spontaneous neural activity is known to play a necessary role in visual development, but the higher-order statistical structure of these coherent, amorphous patterns has only begun to emerge in the past decade. Several computational studies have demonstrated how this endogenous activity can be used to train a developing visual system. Models that generate spontaneous activity analogous to retinal waves have shown that these waves can serve as stimuli for efficient coding models of V1. This general strategy in development has one clear advantage: The same learning algorithm can be used both before and after eye-opening. This same insight can be applied to understanding LGN/V1 spontaneous activity. Although lateral geniculate nucleus (LGN) activity has been less discussed in the literature than retinal waves, here we argue that the waves found in the LGN have a number of properties that fill the role of a training pattern. We make the case that the role of “innate learning” with spontaneous activity is not only possible, but likely in later stages of visual development, and worth pursuing further using an efficient coding paradigm.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-29
    Description: Atherosclerotic plaque rupture in carotid arteries can lead to stroke which is one of the leading causes of death or disability worldwide. The accumulation of atherosclerotic plaque in an artery changes the mechanical properties of the vessel. Whilst healthy arteries can continuously adapt to mechanical loads by remodelling their internal structure, particularly the load-bearing collagen fibres, diseased vessels may have limited remodelling capabilities. In this study, a local stress modulated remodelling algorithm is proposed to explore the mechanical response of arterial tissue to the remodelling of collagen fibres. This stress driven remodelling algorithm is used to predict the optimum distribution of fibres in healthy and diseased human carotid bifurcations obtained using Magnetic Resonance Imaging (MRI). In the models, healthy geometries were segmented into two layers: media and adventitia and diseased into four components: adventitia, media, plaque atheroma and lipid pool (when present in the MRI images). A novel meshing technique for hexahedral meshing of these geometries is also demonstrated. Using the remodelling algorithm, the optimum fibre patterns in various patient specific plaques are identified and the role that deviations from these fibre configurations in plaque vulnerability is shown. This study provides critical insights into the collagen fibre patterns required in carotid artery and plaque tissue to maintain plaque stability.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...